Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T01:46:45.606Z Has data issue: false hasContentIssue false

Adam-Gibbs Formulation of Nonlinear Enthalpy Relaxation

Published online by Cambridge University Press:  16 February 2011

Ian M. Hodge*
Affiliation:
Photographic Research Laboratories, Eastman Kodak Company, Rochester, New York 14650-2116
Get access

Abstract

The Adam-Gibbs (AG) expression linking relaxation times with configurational entropy gives an excellent account of the nonlinearity observed in enthalpy relaxation of amorphous polymeric, inorganic, and simple molecular materials near and below Tg. Data analyses yield zero entropy temperatures that are comparable with available Kauzmann values. The AG formulation, when coupled with a few plausible ancillary assumptions, predicts correlations between the Arrhenius parameters x, Δh*, and the KWW exponent β that are observed experimentally. It is suggested that the AG primary activation energy, Δμ, is the single causative factor that generates these correlations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tool, A. Q., J. Am. Ceram. Soc. 22, 240 (1946).Google Scholar
2. Tool, A. Q., Eichlin, C. G., presented at the 1924 Am. Ceram. Soc. meeting, Atlantic City; J. Am. Ceram. Soc. 14, 276 (1931).Google Scholar
3. Kovacs, A. J., Aklonis, J. J., Hutchinson, J. M., Ramos, A. R., J. Polym. Sci. Polym. Phys. 17, 1097 (1979).CrossRefGoogle Scholar
4. Narayanaswamy, O. S., J. Am. Ceram. Soc. 54, 497 (1971).CrossRefGoogle Scholar
5. Moynihan, C. T., Easteal, A. J., DeBolt, M. A., Tucker, J., I. Am. Ceram. Soc. 59, 12 (1976).CrossRefGoogle Scholar
6. Sasabe, H., Moynihan, C. T., J. Polym. Sci. 16, 1667 (1978).Google Scholar
7. Hodge, I. M., Berens, A. R., Macromolecules 15, 762 (1982).CrossRefGoogle Scholar
8. Hodge, I. M., Huvard, G. S., Macromolecules 16, 371 (1983).Google Scholar
9. Hodge, I. M., Macromolecules 16, 898 (1983).Google Scholar
10. Privalko, V. P., Demchenko, S. S., Lipatov, Y. S., Macromolecules 19, 901 (1986).Google Scholar
11. Hutchinson, J. M., Ruddy, M., J. Polym. Sci. 26, 2341 (1988).CrossRefGoogle Scholar
12. Hodge, I. M., unpublished analysis of data of W. M. Prest Jr..Google Scholar
13. Tribone, J. T., O'Reilly, J. M., Greener, J., Macromolecules 12,1732 (1986).Google Scholar
14. Moynihan, C. T., Sasabe, H., Tucker, J., in Proc. Intl. Symp, on Molten Salts, (Electrochemical Society, Pennington, NJ, 1976), p. 182.Google Scholar
15. Moynihan, C. T., Bruce, A. J., Gavin, D. L., Loehr, S. R., Opalka, S. M., Drexhage, M. G., Polym. Eng. Sci. 24, 1117 (1984).Google Scholar
16. Moynihan, C. T., Easteal, A. J., Tran, D. C., Wilder, J. A., Donovan, E. P., J. Am. Ceram. Soc 53, 137 (1976).Google Scholar
17. DeBolt, M. A., Easteal, A. J., Macedo, P. B., Moynihan, C. T., J. Am. Ceram. Soc. 59, 16 (1976).Google Scholar
18. Moynihan, C. T., Macedo, P. B., Montrose, C. J., Gupta, P. K., DeBolt, M. A., Dill, J. F., Dom, B. E., Drake, P. W., Easteal, A. J., Elterman, P. B., Moeller, R. P., Sasabe, H., Wilder, J. A., Ann. New York Acad. Sci. 279,15 (1976).Google Scholar
19. Hodge, I. M., Macromolecules 20, 2897 (1987).CrossRefGoogle Scholar
20. Adam, G., Gibbs, J. H., J. Chem. Phys. 43, 139 (1965).CrossRefGoogle Scholar
21. Hodge, I. M., unpublished analyses of data in ref. 13.Google Scholar
22. Hodge, I. M., unpublished data.Google Scholar
23. Scherer, G. W., J. Amer. Ceram. Soc. 67, 504 (1984).CrossRefGoogle Scholar
24. Crichton, S. N., Moynihan, C. T., J. Non-Cryst. Solids 102, 222 (1988).Google Scholar
25. Opalka, S. M., PhD Thesis, Rensselaer Polytechnic Institute, 1987.Google Scholar
26. Angell, C. A., J. Non-Cryst. Solids 73, 1 (1985).Google Scholar