Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T17:38:01.375Z Has data issue: false hasContentIssue false

Active Photonic Crystal Devices in Self-Assembled Electro-Optic Polymeric Materials

Published online by Cambridge University Press:  15 March 2011

J. Li
Affiliation:
Department of Electrical and Systems Engineering, The University of Pennsylvania, Philadelphia, PA 19104
P. J. Neyman
Affiliation:
Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
M. Vercellino
Affiliation:
Luna Innovations, Blacksburg, VA 24060
J. R. Heflin
Affiliation:
Department of Physics, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061
R. Duncan
Affiliation:
Luna Innovations, Blacksburg, VA 24060
S. Evoy
Affiliation:
Department of Electrical and Systems Engineering, The University of Pennsylvania, Philadelphia, PA 19104
Get access

Abstract

Photonic crystals (PC) offer novel approaches for integrated photonics by allowing the manipulation of light based on the photonic bandgap effect rather than internal-reflection mechanisms employed in traditional devices. Electro-optic polymers represent interesting possibilities for the development of devices leveraging control over the phase of a confined propagating wave. We here report on the development of such active photonic crystal technology in ionically self-assembled monolayers. The simulation of active photonic devices such as Mach-Zehnder interferometers and wavelength multiplexers is first presented. We then report on the synthesis and optical characterization of electro-optic films grown through the ISAM technique. We conclude by presenting the preliminary development of a nanofabrication platform that would enable the realization of active photonic devices in such materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yablonovitch, E., Phys. Rev. Lett. 58, 2059(1987).Google Scholar
2. John, S., Phys. Rev. Lett. 58, 2486(1987).Google Scholar
3. Chow, E., Lin, S. Y., Johnson, S. G., Villeneuve, P. R., Joannopoulos, J. D., Wendt, J. R., Vawter, G. A., Zubrzycki, W., Hou, H., and Alleman, A., Nature 407, 983(2000).Google Scholar
4. Fan, S., Villeneuve, P. R., Joannopoulos, J. D., IEEE J. Quantum Elect. 36, 1123(2000).Google Scholar
5. Kwon, S. H., Ryu, H. Y., Kim, G. H., Lee, Y. H., Kim, S. B., Appl. Phys. Lett. 83, 3870 (2003).Google Scholar
6. Singer, K. D., Sohn, J. E., and Lalama, S. J., Appl. Phys. Lett. 49, 248 (1986).Google Scholar
7. Girling, I. R., Cade, N. A., Kolinsky, P. V., Jones, R. J., Peterson, I. R., Ahmad, M.M., Neal, D. B., Petty, M. C., Roberts, G. G., and Feast, W. J., J. Opt. Soc. Am. B. 4, 950 (1987).Google Scholar
8. Katz, H. E., Scheller, G., Putvinski, T. M., Schilling, M. L., Wilson, W. L., and Chidsey, C. E. D., Science, 254, 1485 (1991).Google Scholar
9. Decher, G., Science 277, 1232 (1997).Google Scholar
10. Heflin, J. R., Figura, C., Marciu, D., Liu, Y., Claus, R. O., Appl. Phys. Lett. 74, 495(1999)Google Scholar
11. Figura, C., Neyman, P. J., Marciu, D., Brands, C., Murray, M.A., Hair, S., Davis, R.M., Miller, M.B., and Heflin, J.R., SPIE Proc. 3939, 214 (2000).Google Scholar
12. Cott, K. Van, Guzy, M., Neyman, P., Brands, C., Heflin, J.R., Gibson, H.W., Davis, R.M., Angew. Chem. Int. Ed. 41, (2002).Google Scholar
13. Cott, K. Van, Guzy, M., Neyman, P., Brands, C., Heflin, J.R., Gibson, H.W., Davis, R.M., unreported.Google Scholar
14. http://www.elec.gla.ac.uk/groups/opto/photoniccrystal/Software/SoftwareMain.htmGoogle Scholar