Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-17T16:03:08.590Z Has data issue: false hasContentIssue false

Activation Energy for the C49-TO-C54 Phase Transition of Polycrystalline TiSi2 Films with under 30nm Thickness

Published online by Cambridge University Press:  21 February 2011

Y. Matsubara
Affiliation:
ULSI Device Development Laboratories, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229, Japan
K. Noguchi
Affiliation:
ULSI Device Development Laboratories, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229, Japan
K. Okumura
Affiliation:
ULSI Device Development Laboratories, NEC Corporation, 1120 Shimokuzawa, Sagamihara, Kanagawa 229, Japan
Get access

Abstract

The C49–to–C54 transition in TiSi2 was investigated by resistance measurement and x-ray diffraction technique. The resistance measurement showed that the C49–to–C54 transition has an activation energy strongly dependent on the titanium thickness. The energy increased with the thinning of the TiSi2, from 4.6±0.3 eV for TiSi2 formed with 50nm titanium, to 10.5±0.3 eV formed with 20nm titanium. Furthermore, x-ray diffraction result showed that (004)-oriented phase in C54 TiSi2 is responsible for the increase in activation energy. This orientation dependence of the activation energy probably originates from anisotropy in C54 crystal growth during the transition.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Davari, B., Chang, W., Petrillo, K. E., Wong, C. Y., Moy, D., Taur, Y., Wordeman, M. R., Sun, J. Y., Hsu, C. C., and Polcari, M. R., IEEE Trans. Electron Devices, 39, 967 (1992).CrossRefGoogle Scholar
2. Lasky, J. B., Nakos, J. S., Cain, O. J., and Geiss, P. J., IEEE Trans. Electron Devices 38, 262 (1991).Google Scholar
3. Beyers, R. and Sinclair, R., J. Appl. Phys. 57, 5240 (1985).Google Scholar
4. Houtum, H. J. W. van and Raaijmakers, I. J. M. M., J. Mater. Res. Soc. Symp. Proc. 54, 37 (1986).Google Scholar
5. Jeon, H., Sukow, C. A., Honeycutt, J. W., Rozgonyi, G. A., and Nemanich, R. J., J. Appl. Phys. 71, 4269 (1992).CrossRefGoogle Scholar
6. Beyers, R., Coulman, Don and Merchant, Paul, J. Appl. Phys. 61, 5110 (1987).Google Scholar
7. Probst, V., Schaber, H., Mitwalsky, A., Kabza, H., and Hoffmann, B., Maex, K. and hove, L. Van den, J. Appl. Phys. 70, 15, (1991).Google Scholar
8. Östling, M., Petersson, C. S., Norström, H., Runovc, F., Buchta, R., and Wiklund, P., Thin Solid Films, 110, 280 (1983).Google Scholar
9. Corcoran, Y. L., King, A. H. J. Electronic Materials 19, 1177 (1990).Google Scholar
10. Clevenger, L. A., Harper, J. M. E., Cabral, C. Jr., Nobili, C., and Mann, R., J. Appl. Phys. 72, 4978 (1992).Google Scholar
11. Thompson, R. D., Takai, H., Psaras, P. A., and Tu, K. N., J. Appl. Phys. 61, 540 (1987).Google Scholar
12. Nava, F., , A'Amico, and Bearzotti, A. J. Vac. Sci. Thechnol.A 7, 3023 (1989).Google Scholar
13. Nolan, T. P., Sinclair, R., and Beyers, R., J. Appl. Phys. 71, 720 (1992)Google Scholar
14. Shenai, K., J. Mater. Res. 6, 1502 (1991)Google Scholar