Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-05T10:03:08.750Z Has data issue: false hasContentIssue false

Actinide Speciation by Photothermal Spectroscopies: Instrumentation Development

Published online by Cambridge University Press:  28 February 2011

J.M. Berg
Affiliation:
Isotope and Nuclear Chemistry Division; Los Alamos National Laboratory; Los Alamos, NM 87545
C.D. Tait
Affiliation:
Isotope and Nuclear Chemistry Division; Los Alamos National Laboratory; Los Alamos, NM 87545
D.E. Morris
Affiliation:
Isotope and Nuclear Chemistry Division; Los Alamos National Laboratory; Los Alamos, NM 87545
W.H. Woodruff
Affiliation:
Isotope and Nuclear Chemistry Division; Los Alamos National Laboratory; Los Alamos, NM 87545
Get access

Abstract

Photoacoustic spectroscopy using pulsed laser excitation is being developed by a number of research groups as one of the most promising methods for studying speciation of actinides in solution at environmentally relevant concentrations. We present details of a number of hardware and software techniques we have implemented which, once fully developed, we believe will improve the sensitivity of the method. Our approach is based on more extensive waveform analysis. While most signal processing techniques extract the analytical signal from only a small portion of the acoustic waveform produced in the detector by an absorption event, we describe two methods that use more of the waveform. Other methods of minimizing noise sources using both hardware and software are also described.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Schrepp, W., Stumpe, R., Kim, J. I. and Walther, H., Appl. Phys. B 32, 207 (1983).CrossRefGoogle Scholar
2. Stumpe, R., Kim, J. I., Schrepp, W. and Walther, H., Appl. Phys. B 34, 203 (1984).Google Scholar
3. Rutan, S. C. and Brown, S. D., Anal. Chim. Acta 158, 113 (1984).Google Scholar
4. Eiswirth, M., Kim, J. I. and Lierse, C., Radiochimica Acta 38, 197 (1985).CrossRefGoogle Scholar
5. Beitz, J. V., Bowers, K. L., Doxtader, M. M., Maroni, V. A. and Reed, D. T., Radiochimica Acta 44 /45, 87 (1988).Google Scholar
6. Torres, R. A., Palmer, C. E. A., Baisden, P. A., Russo, R. E. and Silva, R. J., Anal. Chem. 62, 298 (1990).Google Scholar
7. Beitz, J. V., Doxtader, M. M., Maroni, V. A., Okajima, S., and Reed, D. T., Rev. Sci. Instrum. 61, 1396 (1990).Google Scholar
8. Berthoud, T., Mauchien, P., Omenetto, N. and Rossi, G., Anal. Chim. Acta 153, 265 (1983).Google Scholar
9. Bidoglio, G., Tanet, G., Cavalli, P. and Omenetto, N., Inorg. Chim. Acta 140, 293 (1987).Google Scholar
10. Moulin, C., Delorme, N., Berthoud, T. and Mauchien, P., Radiochimica Acta 44 /45, 103 (1988).Google Scholar
11. Grenthe, I., Bidoglio, G. and Omenetto, N., Inorg. Chem. 28, 71 (1989).Google Scholar
12. Tam, A. C., Rev. Mod. Phys. 58, 381 (1986).CrossRefGoogle Scholar
13. Patel, C. K. N. and Tam, A. C., Rev. Mod. Phys. 53, 517 (1981).Google Scholar
14. Lai, H. M. and Young, K., J. Acoust. Soc. Am 72, 2000 (1982).Google Scholar
15. Fang, H. L. and Swofford, R. L., in Ultrasensitive Laser Spectroscopy (Academic Press, New York, 1983) pp. 175232.CrossRefGoogle Scholar
16. Berthoud, T., Delorme, N. and Mauchien, P., Anal. Chem 57, 1216 (1985).Google Scholar
17. Erskine, S. R. and Bobbitt, D. R., Appl. Spec. 43, 668 (1989).Google Scholar