Published online by Cambridge University Press: 15 March 2011
Hybrid nano-devices based on linear protein molecular motors working on micro/nano-engineered surfaces that operate in a “cargo architecture”, i.e. motor functionalized nano-objects running on nano-tracks, offer more opportunities than the inverse “sliding architecture” because it fully uses the information regarding directionality which is encoded in tracks, i.e. actin filaments or microtubules. However, this architecture requires the development of techniques for nanolithography with actin filaments (or microtubules) based on molecular self-assembly on engineered surfaces. The present contribution reports on the progress we have made regarding the building of actin nanostructures that would preserve the inherent information over extended micro-sized areas.