Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-27T01:33:08.993Z Has data issue: false hasContentIssue false

Actin Nanotracks for Hybrid Nanodevices Based on Linear Protein Molecular Motors

Published online by Cambridge University Press:  15 March 2011

G. S. Watson
Affiliation:
School of Science, Griffith University, Nathan, QLD 4111, Australia
C. Cahill
Affiliation:
School of Science, Griffith University, Nathan, QLD 4111, Australia
J. Blach
Affiliation:
School of Science, Griffith University, Nathan, QLD 4111, Australia
S. Myhra
Affiliation:
School of Science, Griffith University, Nathan, QLD 4111, Australia
Y. Alexeeva
Affiliation:
BioNanoEngineering Lab, Swinburne University of Technology Hawthorn, VIC 3122, Australia
E.P. Ivanova
Affiliation:
BioNanoEngineering Lab, Swinburne University of Technology Hawthorn, VIC 3122, Australia
D. V. Nicolau
Affiliation:
BioNanoEngineering Lab, Swinburne University of Technology Hawthorn, VIC 3122, Australia
Get access

Abstract

Hybrid nano-devices based on linear protein molecular motors working on micro/nano-engineered surfaces that operate in a “cargo architecture”, i.e. motor functionalized nano-objects running on nano-tracks, offer more opportunities than the inverse “sliding architecture” because it fully uses the information regarding directionality which is encoded in tracks, i.e. actin filaments or microtubules. However, this architecture requires the development of techniques for nanolithography with actin filaments (or microtubules) based on molecular self-assembly on engineered surfaces. The present contribution reports on the progress we have made regarding the building of actin nanostructures that would preserve the inherent information over extended micro-sized areas.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Suzuki, H., Oiwa, K., Yamada, A., Sakakibara, H., Nakayama, H., Mashiko, S. Jpn. J. Appl. Phys. 34:39373941 (1995).Google Scholar
2. Turner, D. C., Chang, C., Fang, K., Brandow, S. L., Murphy, D. B. Biophys. J. 69:27822789, (1995).Google Scholar
3. Suzuki, H., Yamada, A., Oiwa, K., Nakayama, H. and Mashiko, S.. 1997. Biophys. J. 72:1997-(2001).Google Scholar
4. Nicolau, D.V., Suzuki, H., Mashiko, S., Taguchi, T., Yoshikawa, S. Biophys. J, 77 (2), 9904499065, (1999).Google Scholar
5. Dennis, J. R., Howard, J., and Vogel, V.. Nanotechnology. 10:232236, (1999).Google Scholar
6. Mahanivong, C., Wright, J. P., Kekic, M., Pham, D. K., dos Remedios, C., Nicolau, D.V. Biomedical Microdevices 4(2): 111116; (2002).Google Scholar
7. Bunk, R., Klinth, J., Rosengren, J., Nicholls, I., Tagerud, S., Omling, P., Mansson, A., Montelius, L. Microelectronic Engineering 67–68 899904 (2003).Google Scholar
8. Hiratsuka, Y., Tada, T., Oiwa, K., Kanayama, T., Uyeda, T.Q. P. Biophys. J. 81 15551561 (2001).Google Scholar
9. Clemmens, J., Hess, H., Howard, J., Vogel, V. Langmuir; 19(5); 17381744 (2003).Google Scholar
10. Riveline, D., Ott, A., Julicher, F., Winkelmann, D. A., Cardoso, O., Lacapere, J. J., Magnusdottir, S., Viovy, J. L., Gorre-Talini, L. & Prost, J. Eur Biophys J. 27, 403–8 (1998).Google Scholar
11. Hess, H., Clemmens, J., Qin, D., Howard, J. & Vogel, V. Nano Letters 1, 235239, (2001).Google Scholar
12. Stracke, R., Bohm, K. J., Burgold, J., Schacht, H., Unger, E. Nanotechnology. 11:5256, (2000).Google Scholar
13. Hess, H.; Howard, J.; Vogel, V. Nano Lett. 2(10); 11131115 (2002).Google Scholar
14. Hess, H.; Clemmens, J.; Howard, J.; Vogel, V. Nano Lett. 2(2); 113116 (2002).Google Scholar
15. Nicolau, D. V. Jr.; Nicolau, D. V. In Biomedical Applications of Micro- and Nanoengineering. SPIE Proc. 4937, 219225, (2002).Google Scholar
16. Yanagida, T., Nakase, M., Nishiyama, K., Oosawa, F. Nature 307, 5860, (1984).Google Scholar
17. Spudich, J. A., Kron, S. J., Sheetz, M. P. Nature, 315, 584586, (1985).Google Scholar
18. Kabsh, W., Mannherz, H.G., Such, D., Pai, E. F., Holmes, K.C. Nature 347, 3744 (1990).Google Scholar
19. Pollard, T.D. Annu. Rev. Biochem. 55, 9871035 (1986).Google Scholar
20. Xu, J., Schwarz, W. H., Kas, J. A., Stossel, T. P., Janmey, P. A., Pollard, T. D. Biophys. J 74, 27312740 (1998).Google Scholar
21. Higgs, H. N. Pollard, T. D. Annu. Rev. Biochem. 70: 649–76 (2001).Google Scholar
22. Janmey, P. A., Tang, J.X., Schmidt, C.F. http://www.biophysics.org/btol/img/Janmey.P.pdfGoogle Scholar
23. Chik, J. K., Lindberg, U., Schutt, C. E. J Mol Biol 263. 607 (1996). From Protein Data Bank: Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E. Nucleic Acids Research, 28,. 235-242 (2000).Google Scholar
24. Kojima, H., Ishijima, A., and Yanagida, T.. Proc Natl Acad Sci USA. 91:12962–6 (1994).Google Scholar
25. Huxley, H. E., Stewart, A., Sosa, H., and Irving, T.. Biophys. J. 67:2411–21 (1994).Google Scholar
26. Higuchi, H., Yanagida, T., and Goldman, Y. E.. Biophys. J. 69:1000–10 (1995).Google Scholar
27. Wakabayashi, K., Sugimoto, Y., Tanaka, H., Ueno, Y., Takezawa, Y., Amemiya, Y.. Biophys. J 67, 24222435. (1994).Google Scholar
28. Wright, J.P., Pham, D.K., Mahanivong, C., Kekic, M., dos Remedios, C.G., Nicolau, D.V. Biomedical Microdevices 4(3): 205211; (2002).Google Scholar
29. Angelini, T.E., Liang, H., Wriggers, W., Wong, G.C.L.. Proc. Natl. Acad. Sci. USA 100, (2003).Google Scholar
30. Shi, D, Somlyo, A V, Somlyo, A P, Shao, Z, J. Microsc. 201: 377382 (2001).Google Scholar
31. RF, Considine, RA, Hayes, RG, Horn, Langmuir, 15: 16571659 (1999).Google Scholar
32. St-Onge, D, Gicquaud, C, Cell. Biol. 67: 297300 (1989).Google Scholar