Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:43:01.239Z Has data issue: false hasContentIssue false

Acid-Site Characterization of Water-Oxidized Alumina Films by Near-Edge X-Ray Absorption and Soft X-Ray Photoemission

Published online by Cambridge University Press:  15 February 2011

P. J. O'hagan
Affiliation:
Cornell University, Ithaca, NY, 14850
R. P. Merrill
Affiliation:
Cornell University, Ithaca, NY, 14850
T. N. Rhodin
Affiliation:
Cornell University, Ithaca, NY, 14850
S. C. Woronick
Affiliation:
Cornell University, Ithaca, NY, 14850
N. D. Shinn
Affiliation:
Sandia National Laboratories, Albuquerque, NM, 87185
G. L. Woolery
Affiliation:
Mobil Research and Development Corporation, Paulsboro, NJ, 08066
A. W. Chester
Affiliation:
Mobil Research and Development Corporation, Paulsboro, NJ, 08066
Get access

Abstract

Hydroxylated alumina films have been synthesized by water oxidation of single crystal Al(110) surfaces. Thermal dehydroxylation results in anion vacancies which produce an Al(3s) defect state 3.5 eV below the conduction band edge. The defect-DOS exhibits a maximum for oxides heated to 648±25 K, which is just where the materials exhibit maximum Lewis acidity with respect to C2H4 Adsorbed C2H4 produces thermally reactive C2 species which interact covalently with the defect-DOS and nonbonding O(2p) states from the top of the valence band. C(1s) binding energies suggest significant charge transfer which is consistent with a carbenium ion. Ni deposits behave similarly but transfer charge directly to Al species and do not interact with O atoms at the defect site. The defect-DOS is regenerated when the C2 species decomposes or when Ni migrates thermally through the oxide layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cocke, D.L., Johnson, E.D., and Merrill, R.P., Catal. Rev.-Sci. Eng. 26 163 (1984)Google Scholar
2. Pines, H., The Chemistry of Catalytic Hydrocarbon Conversions, (Academic Press, 1981) Chapter 1Google Scholar
3. Knözinger, H., in Acid-Base Catalysis, edited by Tanabe, K., Hatori, H., Yamagochi, T., and Tanoka, T., (VCHS Press, Kodancha, 1988)Google Scholar
4. See for example; Pines, H., op cite, p 13Google Scholar
5. Kijenski, J. and Baiker, A., Catal. Today 5, 1 (1989); H. Knözinger, Op Cite p147; A. Aroux and A. Gervasini, J. Phys. Chem 94, 6371 (1990)Google Scholar
6. Kao, C-C., PhD Thesis, Cornell University (1988)Google Scholar
7. Kao, C-C. and Merrill, R.P., J. Phys. Chem. Solids 52 909 (1991)Google Scholar
8. Balzarotti, A., Antonangeli, F., Girlanda, R., and Martino, G., Solid State Comm. 44 275 (1982)Google Scholar
9. O'Brien, W.L, Jia, J., Dong, Q-Y., Callcutt, T.A., Rubensson, J-E., Mueller, D.L., and Ederer, D.L., Phys. Rev. B 44 1013 (1991)Google Scholar
10. O'Brien, W.L., Jia, J., Dong, Q-Y., Callcott, T.A., Rubensson, J-E., Mueller, D.L., Shinn, N.D., and Woronick, S.C., Phys Rev. B 44 13277 (1991)Google Scholar
11. Rhodin, T.N., Merrill, R.P., O'Hagan, P.J., Woronick, S.C., Shinn, N.D., Woolery, G.L., and Chester, A.W., J. Phys. Chem. 98 2433 (1994)Google Scholar
12. Johnson, E.D. PhD Thesis, Cornell University (1988)Google Scholar
13. Frederick, B.G., Apai, G., and Rhodin, T.N. J. Am. Chem. Soc. 109 4797 (1987)Google Scholar
14. Vaughn, D., editor X-Ray Data Booklet (Center for X-Ray Optics, LBL U. of Calif., Berkeley, 1986)Google Scholar
15. Balzarotti, A., Antonangeli, F., Girlanda, R., and Martino, G., Phys. Rev. B 29 5903 (1984)Google Scholar
16. Ciraci, S. and Batra, I, Phys. Rev. B 28 982 (1983);P. Alemany, R. Boorse, J. Burlitch, and R. Hoffmann, J. Chem. Phys. 97 8464 (1993)Google Scholar
17. Guo, J., Ellis, D., and Lam, D., Phys. Rev. B 45 13647 (1992)Google Scholar
18. Gignac, W.J., Williams, R.S., and Kowalcyk, S.P., Phys. Rev. B 32 1237 (1985)Google Scholar
19. Gautier, M., Duraud, J.P., Van, L. Pham, Guittet, M.J., Surf. Sci. 250, 71 (1991)Google Scholar
20. O'Hagan, P.J., PhD Thesis, Cornell University (1995)Google Scholar