Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-07T12:47:54.317Z Has data issue: false hasContentIssue false

Achievements and Characterizations of GaN With Ga-Polarity in Radio-Frequency Plasma-Assisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  15 March 2011

X.Q. Shen
Affiliation:
Materials Science Division, Electrotechnical Laboratory (ETL), 1-1-4 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
T. Ide
Affiliation:
Materials Science Division, Electrotechnical Laboratory (ETL), 1-1-4 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
S.H. Cho
Affiliation:
Materials Science Division, Electrotechnical Laboratory (ETL), 1-1-4 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
M. Shimizu
Affiliation:
Materials Science Division, Electrotechnical Laboratory (ETL), 1-1-4 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
S. Hara
Affiliation:
Materials Science Division, Electrotechnical Laboratory (ETL), 1-1-4 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
H. Okumura
Affiliation:
Materials Science Division, Electrotechnical Laboratory (ETL), 1-1-4 Umezono, Tsukuba, Ibaraki, 305-8568, Japan
Get access

Abstract

Lattice polarities and film qualities of GaN grown by rf-MBE were investigated concentrating on the use of different buffer layer processes at the initial stage. Direct clarifying by coaxial impact collision ion scattering spectra technique, together with RHEED and chemical wet etching, were applied to identify the lattice polarity of GaN films. XRD rocking curve and photoluminescence results showed that the qualities of GaN films with Ga-polarity were dramatic improved compared to those with N-polarity. Hall effect measurement results indicated that the mobility of the Ga-face film was increased to one order higher (568 cm2/Vs in maximum at room temperature) than that of N-face one.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ponce, F.A., Bour, D.P., Young, W.T., Saunders, M. and Steeds, J.W., Appl. Phys. Lett. 69 (1996) 337.Google Scholar
[2] Seelmann-Eggebert, M., Weyher, J.L., Obloh, H., Zimmermann, H., Rar, A. and Porowski, S., Appl. Phys. Lett. 71 (1997) 2635.Google Scholar
[3] Daudin, B., J.L. Rouviere and Arlery, M., Appl. Phys. Lett. 69 (1996) 2480.Google Scholar
[4] Smith, A.R., Feenstra, R.M., Greve, D.W., Shin, M.S., Showronski, M., Neugebauer, J. and Northrup, J.E., Appl. Phys. Lett. 72 (1998) 2114.Google Scholar
[5] Hellman, E.S., MRS Internet J. Nitride Semicond. Res. 3 (1998) 11.Google Scholar
[6] Shen, X.Q., Ide, T., Cho, S.H., Shimizu, M., Hara, S., Okumura, H. Sonoda, S. and Shimizu, S., Jpn. J. Appl. Phys. 39 (2000) L16.Google Scholar
[7] Sumiya, M., Tanaka, M., Ohtsuka, K., Fuke, S., Ohnishi, T., Ohkubo, I., Yoshimoto, M., Koinuma, H. and Kawasaki, M., Appl. Phys. Lett. 75 (1999) 674.Google Scholar
[8] Sonoda, S., Shimizu, S., Suzuki, Y., Balakrishnan, K., Shirkashi, J., Okumura, H., Nishihara, T. and Shinohara, M., Jpn. J. Appl. Phys. 38 (1999) L1219.Google Scholar
[9] Shen, X.Q., Ide, T., Cho, S.H., Shimizu, M., Hara, S., Okumura, H. Sonoda, S. and Shimizu, S., to be published in J. Cryst. Growth.Google Scholar
[10] Grandjean, N., Massies, J., Leroux, M. and Lorenzini, P., Appl. Phys. Lett. 72 (1998) 82.Google Scholar