Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T17:29:49.148Z Has data issue: false hasContentIssue false

Accurate Determination of γ′ Solvus in Ni-Al-X Ternary Systems

Published online by Cambridge University Press:  26 February 2011

Yong Myong Hong
Affiliation:
Graduate School, Dept. of Materials Science and Engineering, Tokyo Institute of Technology, Nagatsuta.
Yoshinao Mishima
Affiliation:
Research Laboratory of Precision Machinery and Electronics, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227, Japan
Tomoo Suzuki
Affiliation:
Research Laboratory of Precision Machinery and Electronics, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 227, Japan
Get access

Abstract

An attempt has been made to determine the γ/γ′ phase boundaries with particular emphasis on the γ′ solvus in ternary Ni-Al-X systems with X being one of the VA or VIA transition metal elements. It is shown that the γ′ solvus in each ternary system can be obtained as a surface with respect to composition and temperature by employing differential thermal analysis (DTA) as a key experimental technique with support from energy dispersive X-ray spectroscopy combined with scanning elecron microscope(SEM-EDX). Also shown is that the DTA results often provide useful information on the phase relation in the vicinity of γ and γ′ phase fields. In the Ni-Al-V ternary system, for example, the pseudo-binary constitution between Ni3Al and Ni3V is suggested. The results presented here are systematic and consistent and therefore are reliable as compared with the previous results reported fragmentarily.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hong, Y.M., Mitsuhashi, A., Mishima, Y. and Suzuki, T., J. Japan Soc. Heat Treatment 28, 286 (1988).Google Scholar
2. Hong, Y.M., Nakajima, H., Mishima, Y. and Suzuki, T., ISIJ Intnl. 1, (1989), in press.Google Scholar
3. Sanchez, J.M., Barefoot, J.R., Jarrett, R.N. and Tien, J.K., Acta Met. 32, 1519 (1984).Google Scholar
4. Hansen, M., Constitution of Binary Alloys, McGraw-Hill, New York, (1958).Google Scholar
5. Singleton, M.F., Murray, J.L. and Nash, P., Binary Alloy Phase Diagrams, 1, 142 (1984).Google Scholar
6. Hong, Y.M., Mishima, Y. and Suzuki, T., ISIJ Intnl. to be published.Google Scholar
7. Taylor, A. and Floyd, R.W, J.Inst. Metals 81, 451 (19521953).Google Scholar
8. Taylor, A., Trans. AIME 206, 1356 (1956).Google Scholar
9. Oforka, N.C. and Argent, B.B., J. Less Common Metals 114, 97 (1985).Google Scholar
10. Oforka, N.C. and Haworth, C.W., Scan. J. Met. 16, 184 (1987).Google Scholar
11. Bagaryatskiy, Yu.A. and Ivanovskaya, L.E., Doklady Akad. Nauk SSSR, 132, 339 (1960).Google Scholar
12. Nash, P., Fielding, S. and West, D.R.F., Metal Science 17, 192 (1983).Google Scholar
13. Markiv, V.Ya., Burnashova, V.V., Pryakhina, L.L. and Myasnikova, K.P.: Izvest. Akad. Nauk SSSR, Metally 5, 180 (1969).Google Scholar
14. Miracle, D.B., Lark, K.A., Srinivasan, V. and Lipsitt, H.A., Met.Trans. A 15A, 481 (1984).CrossRefGoogle Scholar
15. Budberg, P.B., Zhur. Neorg, Khim. 3, 694 (1958).Google Scholar
16. Myasnikova, K.P., Markiv, V.Ya, Pryakhina, L.I. and Motrychuk, G.Ya. Izvest. Akad. Nauk SSSR, Metally 12, 222 (1977).Google Scholar
17. Mints, R.S., Belyaeva, G.F., Malkov, Yu.S., Russ. J. Inorg. Chem 7, 1236 (1962).Google Scholar
18. Benjamin, J.S., Giessen, B.C. and Grant, N.J., Trans, Met. Soc. AIME 236, 224 (1966).Google Scholar
19. Markiv, V.Ya., Matushevskaya, N.F. and Kuzman, Yu.B., Izvest Akad. Nauk SSSR, Metally 2, 127 (1966).Google Scholar
20. Golubtsova, R.B., Doklady Akad. Nauk SSSR 160, 1311 (1965).Google Scholar
21. Guseva, L.N., Mints, R.S., Malkov, Yu, Izvest. Akad. Nauk SSSR, Metally 5, 186 (1969).Google Scholar
22. Duvall, D.S. and Donachie, M.J. Jr., J. Inst. Metals 98, 182 (1970).Google Scholar
23. Cisse, J. and Davies, R.G., Met. Trans. 1, 2003 (1970).Google Scholar
24. Nash, P., Kavishe, F.P.L. and West, D.R.F., Metal Sci. 14,147 (1980).Google Scholar
25. Liang, W.W., Standley, R., Nash, P. and Skowron, M., J. Mater. Sci. Letter 3, 259 (1984).Google Scholar
26. Hubert, J.C., Kurz, W. and Lux, B., J.Cryst. Growth 13–14, 757 (1972).Google Scholar
27. Mints, R.S., D'yakonova, N.P., Umansky, Ya.S., Bondarenko, Yu.A. and Bondarenko, T.A., Doklady Akad. Nauk SSSR 206, 87 (1972).Google Scholar
28. Mollard, F., Lux, B. and Hubert, J.C., Z.Matallkde. 65, 461 (1974).Google Scholar
29. Nash, P. and West, D.R.F., Met. Sci. 13, 670 (1979).Google Scholar
30. Sano, T. and Nemoto, M., private communication, (1988).Google Scholar
31. Willemin, P., Dugue, O., Durand-Charre, M. and Davidson, J.H., Mat. Sci. Tech. 2, 344 (1986).CrossRefGoogle Scholar
32. Anton, D.L., Pearson, D.D. and Snow, D.B., MRS Symp. Proc. 81, 287 (1987).CrossRefGoogle Scholar
33. Hume-Rothery, W., Phil.Mag. 22, 1013 (1936).Google Scholar
34. Mishima, Y., Ochiai, S. and Suzuki, T., Acta Met. 33, 1161 (1985).CrossRefGoogle Scholar
35. Miedema, A.R., J. Less-Common Met. 46, 67 (1976).Google Scholar