Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T11:11:13.108Z Has data issue: false hasContentIssue false

Acceptors in ZnO Studied by Photoluminescence

Published online by Cambridge University Press:  01 February 2011

Michael A Reshchikov
Affiliation:
[email protected], Virginia Commonwealth University, Physics, 1020 West Main St., Richmond, VA, 23284, United States, 804-828-1613, 804-828-7073
James Garbus
Affiliation:
[email protected], Virginia Commonwealth University, Physics, 1020 West Main St., Richmond, VA, 23284, United States
Gabriel Lopez
Affiliation:
[email protected], Virginia Commonwealth University, Physics, 1020 West Main St., Richmond, VA, 23284, United States
Monica Ruchala
Affiliation:
[email protected], Virginia Commonwealth University, Physics, 1020 West Main St., Richmond, VA, 23284, United States
Bill Nemeth
Affiliation:
[email protected], Cermet, Inc., Atlanta, GA, 30318, United States
Jeff Nause
Affiliation:
[email protected], Cermet, Inc., Atlanta, GA, 30318, United States
Get access

Abstract

We studied photoluminescence from melt-grown ZnO crystals annealed in air ambient at different temperatures. Along with intense and sharp excitonic lines, we observed several broad bands presumably related to deep acceptors. Two luminescence bands peaking at 1.95 and 2.15 eV at 10 K were studied in detail at different temperatures. The 1.95 eV band has been attributed to transitions from shallow donors to yet unidentified deep acceptor. Very slow non-exponential decay of this band at low temperatures supports such an assumption.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reshchikov, M. A. and Morkoç, H., J. Appl. Phys. 97, 061301 (2005).Google Scholar
2. Dingle, R., Phys. Rev. Lett. 23, 579 (1969).Google Scholar
3. Leiter, F., Alves, H., Pfisterer, D., Romanov, N. G., Hofmann, D. M., and Meyer, B. K., Physica B 340–342, 201 (2003).Google Scholar
4. Studenikin, S. A., Golego, N., and Cocivera, M., J. Appl. Phys. 84, 2287 (1998).Google Scholar
5. Priller, H., Decker, M., Hauschild, R., Kalt, H., and Klingshirn, C., Appl. Phys. Lett. 86, 111909 (2005).Google Scholar
6. Greene, L. E. et al., Angew. Chem. Int. Ed. 42, 3031 (2003).Google Scholar
7. Gaspar, C., Costa, F., and Monteiro, T., J. Mat. Sci.: Materials in Electronics 12, 269 (2001).Google Scholar
8. Heo, Y. W., Norton, D. P., and Pearton, S. J., J. Appl. Phys. 98, 073502 (2005).Google Scholar
9. Ong, H. C. and Du, G. T., J. Cryst. Growth 265, 471 (2004).Google Scholar
10. Zhong, J., Kitai, A. H., Mascher, P., and Puff, W., J. Electrochem. Soc. 140, 3644 (1993).Google Scholar
11. Reshchikov, M. A., Gu, X., Nause, J., and Morkoç, H., Mater. Res. Soc. Symp. Proc. 892, FF23.11 (2006).Google Scholar
12. Reshchikov, M. A., Iqbal, M. Zafar, Park, S. S., Lee, K. Y., Tsvetkov, D., Dmitriev, V., and Morkoç, H., Physica B 340–342, 444 (2003).Google Scholar