Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T06:58:34.639Z Has data issue: false hasContentIssue false

AC susceptibility of the sintered Bi1.6Pb0.4Sr2(Ca1-xMx)2Cu3Oδbulk high-Tc superconductors

Published online by Cambridge University Press:  18 March 2011

Malik I Adam
Affiliation:
Universiti Putra Malaysia, Department of Physics, 43400, Serdang, Selangor, MALAYSIA
Abdul Halim Shaari
Affiliation:
Universiti Putra Malaysia, Department of Physics, 43400, Serdang, Selangor, MALAYSIA
Zainul A Hassan
Affiliation:
Universiti Putra Malaysia, Department of Physics, 43400, Serdang, Selangor, MALAYSIA
Kaida Khalid
Affiliation:
Universiti Putra Malaysia, Department of Physics, 43400, Serdang, Selangor, MALAYSIA
Get access

Abstract

AC susceptibility measurements as a function of temperature, frequency and applied ac field amplitude were performed on two rectangular bar shaped samples of nominal composition Bi1.6Pb0.4Sr2(Ca1-xMx)2Cu3Oδ, with M=Pr, Gd, and x=0.01, obtained by the usual solid state reaction route. The incorporation of the rare earth elements at low concentration stage results in an improvement of grain connectivity for the sample doped with Pr. On the other end, the ac field amplitude and frequency dependence of the susceptibility curves disclosed bulk pinning hystersis loss feature. The potential barrier height, activation energy at the grain boundary extracted from the low temperature peak revealed that flux creep is governing the pinning mechanism inside the samples. Qualitative discussion in the framework of the critical state model was highlighted

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Goromy, F., and Lobotka, P., Solid State Commun. 66, 645649(1988).Google Scholar
2. Celebi, Selahattin, Physica C. 316, 251256(1999).Google Scholar
3. Bean, C. P., Rev. Mod. Phys. 36, 3139(1964).Google Scholar
4. Chen, D-X., Nogues, J., and Rao, K. V., Cryogenics. 29, 800808(1989).Google Scholar
5. Emmen, J. H. P. M., Stollman, G. M., and De Jonge, W. J. M., Physica C. 169, 418424(1990)Google Scholar
6. Malozemoff, A. P., Worthington, T. K., Yeshurun, Y., and Holtzberg, F., Phys. Rev. B. 38, 72037206(1988).Google Scholar
7. Prozorov, R., Shaulov, A., Wolfus, Y., and Yeshurun, Y., Phys. Rev. B.52, 1254112544(1995).Google Scholar
8. Muller, K-H., Physica C, 168, 585590(1990).Google Scholar
9. Muller, K-H., Nikolo, M., Driver, R., Phys. Rev. B. 43, 79767979(1991).Google Scholar
10. Nikolo, M., and Goldfarb, R. B., Phys. Rev. B. 39(10), 61566618(1989).Google Scholar
11. Celebi, S., Karaca, I., Aksu, E., Gencer, A., Physica C. 309, 131137(1998).Google Scholar
12. Ren, C., Lin, F. Y., Ding, S. Y., Li, Z.M, Aruna, S.A., Qiu, L., Yao, X.X., Yan, S. L., andSi, M. S., Supercond. Sci. Technol. 12, 400404(1999).Google Scholar
13. Qin, M. J., and Yao, X. X., Physica C.282–287, 22292230(1997).Google Scholar
14. Halim, S. A., Mohamed, S. B., Azhan, H., Khawaldeh, S. A., Sidek, H. A. A., Physica C. 312, 7884(1999).Google Scholar
15. Goldfarb, R. B., Lelental, M., and Thompson, C. A. in Magnetic Susceptibility of Superconductors and Other Spin Systems, edited by Hein, R. A., Francavilla, T. L., Liebenberg, D. H., (Plenum, New York, 1991) pp.4980.Google Scholar
16. Yeshurun, Y., and Malozemoff, A. P., Phys. Rev. Lett. 60(21), 22022205(1988).Google Scholar