Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-27T18:16:14.690Z Has data issue: false hasContentIssue false

AC Operation of GaN:Er Thin Film Electroluminescent Display Devices

Published online by Cambridge University Press:  17 March 2011

J. Heikenfeld
Affiliation:
Nanoelectronics Laboratory, University of Cincinnati Cincinnati, Ohio 45221-0030
A. J. Steckl
Affiliation:
Nanoelectronics Laboratory, University of Cincinnati Cincinnati, Ohio [email protected]
Get access

Abstract

Thin-film electroluminescence has been obtained from GaN:Er deposited directly on amorphous dielectric layers. Electroluminescent device (ELD) structures consisting of a dielectric/GaN/dielectric were formed on p+-Si substrates. In contrast to previous GaN:Er ELDs which used epitaxial growth conditions on crystalline substrates and were operated under DC bias, these ELDs were operated under AC bias. A maximum luminance value of 300, 60, and 15 cd/m2 has been achieved from GaN:Er and AlGaN:Er AC-ELDs biased at 180 V and 100, 10, and 1 kHz, respectively. The emission spectra, which originate from Er3+ 4f-4f transitions, consist of dominant visible emission at ∼537/558 nm and infra-red (IR) emission at 1.5 μm. A violet emission peak at 415 nm indicates that hot carriers can gain up to ∼3 eV energy for an applied voltage corresponding to 1.5 MV/cm applied field. The emitted intensity initially increases linearly with frequency, followed by a trend towards saturation. The frequency for 3 dB reduction from the linear relation is at ∼65 kHz for visible emission and ∼8 kHz for infrared emission. The saturation trends can be explained in terms of the spontaneous emission lifetimes of the visible (∼10 μs) and IR (∼1ms) Er3+ emissions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Rack, P. D. and Holloway, P. H., Mat. Sci. and Eng. R21, 171 (1998).Google Scholar
2. King, C. N., J. Vac. Sci. Tech. A 14 (3), 1729 (1996).Google Scholar
3. Grossman, S., Electronic Design, p. 25, May 1 (2000).Google Scholar
4. Russ, M. J., Kennedy, D. I., J. Electrochem. Soc. 114 (10), 1066 (1967).Google Scholar
5. Steckl, A. J., Heikenfeld, J., Garter, M., Birkhahn, R., and Lee, D. S., Compound Semiconductor 6 (1), 48 (2000), and reference therein.Google Scholar
6. Citrin, P. H., Northrup, P. A., Birkhahn, R., and Steckl, A. J., Appl. Phys. Lett. 76 (20), 2865 (2000).Google Scholar
7. Bellotti, E., Oguzman, I. H., Kolnik, J., Brennan, K. F., Wang, R., and Ruden, P. P.., Mat. Res. Soc. Symp. Proc. Vol. 468, 457 (1997).Google Scholar
8. Heikenfeld, J. and Steckl, A. J., Appl. Phys. Lett. 77 (22), 3520 (2000).Google Scholar
9. Steckl, A. J. and Zavada, J. M., MRS Bulletin 24 (9), 33 (September 1999).Google Scholar
10. Mueller-Mach, R., Mueller, G. O., Leskelä, M., Li, W., and Ritala, M., Chapters 2 and 3 in Electroluminescence II, ed. Meuller, G. O., Semicond. Semimetals 65, Academic Press, San Diego (2000).Google Scholar
11. Zhao, H., Xu, Z., Wang, Y., Hou, Y., and Xu, X., Displays, 21, 143 (2000).Google Scholar
12. Shannon, R. D., Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. 32, 751 (1976).Google Scholar
13. Handbook of Chemistry and Physics 78, ed. Lide, D. R., CRC Press (1997).Google Scholar
14. Zavada, J. M., Thaik, M., Hömmerich, U., MacKenzie, J. D., Abernathy, C. R., Pearton, S. J., and Wilson, R. G., J. Alloy Cmpd 300–301, 207 (2000).Google Scholar
15. Steckl, A. J., Heikenfeld, J., Lee, D. S., Garter, M., Proc. of European Mat. Res. Soc. 2000, Symp. on Rare Earth Doped Semiconductors, Strasbourg, France (June 2000).Google Scholar
16. Hömmerich, U., Seo, J. T., MacKenzie, J. D., Abernathy, C. R., Steckl, A. J., and Zavada, J. M., MRS Internet J. Nitride Semicond. Res. 5S1, W11.65 (2000).Google Scholar
17. Dimitrova, V. I., Patten, P. G. Van, Richardson, H. H., and Kordesch, M. E., Appl. Phys. Lett 77 (4), 478 (2000).Google Scholar