No CrossRef data available.
Article contents
ZnO:Al Thin Films by Successive Chemical Solution Deposition for Transistors Applications
Published online by Cambridge University Press: 15 May 2015
Abstract
Here, we show results on the deposition of ZnO:Al thin films by the successive ionic layer adsorption and reaction method. The growing of the films was performed by sequentially immersing glass and SiO2/Si substrates in water at temperatures close to the boiling point, a precursor reaction solution, water at room temperature and ultrasonic water bath. The resulting ZnO:Al films were transparent and well adhered to the substrates. From X-ray diffraction analysis was determined that the ZnO:Al films had hexagonal wurtzite structure with preferential orientation along the c-axis. Changes in the morphology of the films were obtained from ellipsoidal-shaped aggregates for the undoped ZnO films to spherical-shaped aggregates for the ZnO:Al films. The optical transparency and bandgap of the ZnO:Al films was about 85% and 3.28 eV, respectively. Thin film transistors were fabricated with ZnO:Al films as active layers. The characterized device had a saturation mobility of 0.048 cm2/V-s, threshold voltage of approximately 16.1 V and a drain current on-to-off ratio (Ion/Ioff) in the order of 103.
- Type
- Articles
- Information
- MRS Online Proceedings Library (OPL) , Volume 1731: Symposium O – Oxide Semiconductors , 2015 , mrsf14-1731-o09-03
- Copyright
- Copyright © Materials Research Society 2015