Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:46:20.220Z Has data issue: false hasContentIssue false

ZnO Thin Film Transistors for Flexible Electronics

Published online by Cambridge University Press:  15 February 2011

P. F. Carcia
Affiliation:
DuPont Research & Development, Experimental Station, Wilmington, DE 19880-0356, USA
R. S. McLean
Affiliation:
DuPont Research & Development, Experimental Station, Wilmington, DE 19880-0356, USA
M.H. Reilly
Affiliation:
DuPont Research & Development, Experimental Station, Wilmington, DE 19880-0356, USA
I. Malajovich
Affiliation:
DuPont Research & Development, Experimental Station, Wilmington, DE 19880-0356, USA
K.G. Sharp
Affiliation:
DuPont Research & Development, Experimental Station, Wilmington, DE 19880-0356, USA
S. Agrawal
Affiliation:
DuPont Research & Development, Experimental Station, Wilmington, DE 19880-0356, USA
G. Nunes
Affiliation:
DuPont Research & Development, Experimental Station, Wilmington, DE 19880-0356, USA
Get access

Abstract

In flexible electronics, plastic substrates can limit processing temperatures to less than 100° C. Consequently, most semiconductors, including amorphous silicon, may be incompatible with temperature-sensitive plastic substrates. While organic semiconductors may seem well suited to this particular application niche, their stability is questionable and their mobility is often low (∼0.1 cm2/V-s). In this paper we show that ZnO is a promising semiconductor candidate for flexible electronics, because thin film transistors can be fabricated at room temperature with higher mobility (> 1 cm2/V-s) and high on/off ratio (> 104).

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Parsons, G. N., Yang, C-S, Klein, T. M., and Smith, L., Mat. Res. Symp. Proc. 507, 19, 1998.Google Scholar
2. Smith, P. M., Carey, P.G., Sigmon, T.W., Appl. Phys. Lett. 70, 342 (1997).Google Scholar
3. Brown, A.R., Jarrett, C. P., Leeuw, D. M. de, and Matters, M., Synthetic Metals 88, 37 (1997).Google Scholar
4. Katz, H. E., J. Mater. Chem. 7, 369 (1997).Google Scholar
5. Bao, Z., Lovinger, A. J., and Brown, J., J. Am. Chem. Soc. 120, 207 (1998)Google Scholar
6. Katz, H. E., Johnson, J., Lovinger, A. J., and Li, W., J. Am. Chem. Soc. 122, 7787 (2000)Google Scholar
7. Carcia, P.F., McLean, R. S., Reilly, M. H., and Nunes, G. Jr, Appl. Phys. Lett. 82, 1117 (2003).Google Scholar
8. , Landolt-Bornstein, Semiconductors 17, (Springer-Verlag, Berlin, Germany, 1982) p. 35ff.Google Scholar
9. Sze, S. M., Physics of Semiconductor Devices, (Wiley, New York, 1981) p. 442.Google Scholar
10. Levinson, J., Shepherd, F. R., Scanlon, P. J., Westwood, W. D., Este, G., and Rider, M., J. Appl. Phys. 53, 1193 (1982).Google Scholar
11. Swalin, R. A., Thermodynamics of Solids (Wiley & Sons, New York, 1972) p 335 ff.Google Scholar
12. Cullity, B. D., Elements of X-ray Diffraction, (Addison-Wesley, Reading, MA, 1967) p. 99.Google Scholar