Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T07:25:57.356Z Has data issue: false hasContentIssue false

ZnO Spintronics and Nanowire Devices

Published online by Cambridge University Press:  26 February 2011

David P. Norton
Affiliation:
MSE, University of Florida, Gainesville, Florida
Young-Woo Heo
Affiliation:
MSE, University of Florida, Gainesville, Florida
L C Tien
Affiliation:
MSE, University of Florida, Gainesville, Florida
M P Ivill
Affiliation:
MSE, University of Florida, Gainesville, Florida
Y Li
Affiliation:
MSE, University of Florida, Gainesville, Florida
B S Kang
Affiliation:
Chemical Engineering, University of Florida, Gainesville, Florida
Fan Ren
Affiliation:
Chemical Engineering, University of Florida, Gainesville, Florida
J Kelly
Affiliation:
Physics, University of Florida, Gainesville, Florida.
A F Hebard
Affiliation:
Physics, University of Florida, Gainesville, Florida.
Stephen Pearton
Affiliation:
MSE, University of Florida, Gainesville, Florida
Get access

Abstract

ZnO is a very promising material for spintronics applications, with many groups reporting room temperature ferromagnetism in films doped with transition metals during growth or by ion implantation. In films doped with Mn during PLD, we find an inverse correlation between magnetization and electron density as controlled by Sn doping. The saturation magnetization and coercivity of the implanted single-phase films were both strong functions of the initial anneal temperature, suggesting that carrier concentration alone cannot account for the magnetic properties of ZnO:Mn and factors such as crystalline quality and residual defects play a role. Plausible mechanisms for the ferromagnetism include the bound magnetic polaron model or exchange is mediated by carriers in a spin-split impurity band derived from extended donor orbitals. We will also review progress in ZnO nanowires. The large surface area of nanorods makes them attractive for gas and chemical sensing, and the ability to control their nucleation sites makes them candidates for micro-lasers or memory arrays. Single ZnO nanowire depletion-mode metal-oxide semiconductor field effect transistors exhibit good saturation behavior, threshold voltage of ∼-3V and a maximum transconductance of 0.3 mS/mm. Under UV illumination, the drain-source current increased by approximately a factor of 5 and the maximum transconductance was ∼ 5 mS/mm. The channel mobility is estimated to be ∼3 cm2 /V.s, comparable to that for thin film ZnO enhancement mode MOSFETs and the on/off ratio was ∼25 in the dark and ∼125 under UV illumination. Pt Schottky diodes exhibit excellent ideality factors of 1.1 at 25 °C, very low reverse currents and a strong photoresponse, with only a minor component with long decay times thought to originate from surface states. In the temperature range from 25–150 °C, the resistivity of nanorods treated in H2 at 400 °C prior to measurement showed an activation energy of 0.089 eV and was insensitive to the ambient used. By contrast, the conductivity of nanorods not treated in H2 was sensitive to trace concentrations of gases in the measurement ambient even at room temperature, demonstrating their potential as gas sensors. We have also made sensitive pH sensors using single ZnO nanowires.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. von Molnar, S. and Read, D., Proc.IEEE, 91, 715 (2003).Google Scholar
2. Ohno, H., J. Vac. Sci.Technol B, 18, 2039(2000).Google Scholar
3. Dietl, T., Semicond. Sci. Technol., 17, 377 (2002).Google Scholar
4. Pearton, S.J., Abernathy, C.R., Overberg, M.E., Thaler, G.T., Norton, D.P., Theodoropoulou, N., Hebard, A.F., Park, Y.D., Ren, F., Kim, J. and Boatner, L.A., J. Appl.Phys. 93 1(2003).Google Scholar
5. Pearton, S.J., Abernathy, C.R., Norton, D.P., Hebard, A.F., Park, Y.D., Boatner, L.A. and Budai, J.D., Mat.Sci.Eng. R.40 137(2003).Google Scholar
6. Dietl, T., Ohno, H., Matsukura, F., Cibert, J. and Ferrand, D., Science 287, 1019 (2000).Google Scholar
7. Sato, K. and Katayama-Yoshida, H., Semicond.Sci.Technol. 17, 367(2002).Google Scholar
8. Prellier, W., Fouchet, A. and Mercey, B., J. Phys.Condensed Matter 15, R1583(2003).Google Scholar
9. Fukumura, T., Yamada, Y., Toyosaki, H., Hasegawa, T., Koinuma, H. and Kawasaki, M., Appl.Surface.Sci.(in press).Google Scholar
10. Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., and Koinuma, H., Science, 291, 854 (2001).Google Scholar
11. Matsumoto, Y., Takahashi, R., Murakami, M., Koida, T., Fan, X. J., Hasegawa, T., Fukumura, T., Kawasaki, M., Koshihara, S. Y., and Koinuma, H., Japan. J. Appl. Phys., 40, L1204 (2001).Google Scholar
12. Sato, K. and Katayama-Yoshida, H., Japan J. Appl. Phys., 39, L555 (2000).Google Scholar
13. Ueda, K., Tabata, H., and Kawai, T., Appl. Phys. Lett., 79, 988(2001).Google Scholar
14. Yang, S.G., Pakhomov, A.B., Hung, S.T. and Wong, C.Y., IEEE Trans.Magn. 38, 2877 (2002).Google Scholar
15. Wakano, N., Fujimura, Y., Morinaga, N., Abe, A., Ashida, N., and Ito, T., Physica E, 10, 260 (2001)Google Scholar
16. Fukumura, T., Jin, Z. W., Ohtomo, A., Koinuma, H., and Kawasaki, M., Appl. Phys. Lett. 75, 3366 (1999).Google Scholar
17. Berciu, M. and Bhatt, R.N., 2001, Phys. Rev. Lett. 87, 108203 (2001)Google Scholar
18. Wakano, T., Fujimura, N., Morinaga, Y., Abe, N., Ashida, A., and Ito, T., Physica C 10, 260 (2001).Google Scholar
19. Fukumura, T., Jin, Z., Ohtomo, A., Koinuma, H., and Kawasaki, M., Appl. Phys. Lett. 75, 3366 (1999).Google Scholar
20. Jung, S. W., An, S.-J., Yi, G.-C., Jung, C. U., Lee, S.-I., and Cho, S., Appl. Phys. Lett. 80, 4561 (2002).Google Scholar
21. Norton, D. P., Pearton, S. J., Hebard, A. F., Theodoropoulou, N., Boatner, L. A., and Wilson, R. G., Appl Phys. Lett. 82, 239(2003).Google Scholar
22. Norton, D.P., Overberg, M.E., Pearton, S.J., Pruessner, K., Budai, J.D., Boatner, L.A., Chisholm, M.F., Lee, J.S., Khim, Z.G., Park, Y.D. and Wilson, R.G., Appl.Phys.Lett. 83, 2294 (2003)Google Scholar
23. Sato, K. and Katayama-Yoshida, H., Mat.Res.Soc.Symp.Proc. Vol.666, F4.6.1(2001)Google Scholar
24. Shinde, S.R., Ogale, S.B., Sarma, S.D., Simpson, J.R., Drew, H.D., Hofland, S.E., Lanci, C., Buban, J.P., Browning, N.D., Kulkarni, V.N., Higgins, J., Sharma, R.P., Greene, R.L. and Venkatesan, T., Phys.Rev.B. 67, 115211 (2003).Google Scholar
25. Punnoose, A., Seedra, M.S., Park, W.K. and Moodera, J.S., J. Appl.Phys. 93, 7867 (2003).Google Scholar
26. Nakagawa, H. and Katayama-Yoshida, H., Jap. J. Appl. Phys. 40, L1355 (2001).Google Scholar
27. Berciu, M. and Bhatt, R.N., Physica B 312/313, 815 (2002).Google Scholar
28. Durst, A.C., Bhatt, R.N. and Wolff, P.A., Phys. Rev. B 65, 235205 (2002).Google Scholar
29. Kim, J.-H., Kim, H., Kim, D., Ihm, Y.-E. and Choo, W.-K., J. Appl.Phys. 92, 6066(2002).Google Scholar
30. Saeki, H., Tabata, H., and Kawai, T., Solid-State Commun. 120, 439 (2001).Google Scholar
31. Cho, Y.M., Choo, W.-K., Kim, H., Kim, D. and Ihm, Y.-E., Appl.Phys.Lett. 80, 3358 (2002).Google Scholar
32. Lee, H.J., Jeong, S.Y., Cho, C.R. and Park, C.H., Appl.Phys.Lett. 81, 4020(2002).Google Scholar
33. Sharma, P., Gupta, A., Rao, K.V., Owens, F.J., Sharma, R., Ahuja, R., Osorio Guillen, J.M., Johansson, B. and Gehring, G.A., Nature Mat. 2 673. (2003)Google Scholar
34. Hahn, S.J., Song, J.W., Yang, C.H., Park, S.H., Park, J.H., Jeong, Y.H. and Rhie, K.W., Appl.Phys.Lett. 81, 4212 (2002).Google Scholar
35. Rode, K., Anane, A., Mattana, R., Contour, J.-P., Durand, O. and Le Bourgeois, R., J. Appl.Phys. 93, 7676(2003).Google Scholar
36. N. Theordoropoulou et al. (to be published).Google Scholar