Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T22:04:13.293Z Has data issue: false hasContentIssue false

ZnO and ZnMgO Growth by Molecular Beam Epitaxy

Published online by Cambridge University Press:  11 February 2011

Mitsuaki Yano
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan Bio Venture Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan
Ken-ichi Ogata
Affiliation:
Bio Venture Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan
FengPing Yan
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan
Kazuto Koike
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan
Shigehiko Sasa
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan Bio Venture Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan
Masataka Inoue
Affiliation:
New Materials Research Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan Bio Venture Center, Osaka Institute of Technology, Asahi-ku Ohmiya, Osaka 535–8585, Japan
Get access

Abstract

Characteristics of the ZnO and ZnMgO films grown by radical-source molecular beam epitaxy are reported. The ZnO films on a-plane sapphire substrates had a superior quality in crystallographic, optical and electrical properties, and n-type doping with Al was successfully performed up to 1020 cm–3. The Mg-content of ZnMgO alloys was found to be controlled by a simple growth mechanism as a function of Mg-cell temperature. The alloying in the ZnO-rich region resulted in single-crystalline growth although the photoluminescence characteristics at x = 0.22 suggested the presence of microscopic phase separation. Single-crystalline growth was also achieved on Si (111) substrates by using a CaF2 buffer layer to protect the Si-surface from oxidation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ooe, K., Hamamoto, Y., Iuchi, T., and Hirano, Y., Abstract of SPIE Symp. on Smart Materials, Nano-, and Micro- Smart Systems, Melbourne, Dec. 1618, 2002, in press.Google Scholar
2. Fons, P., Iwata, K., Yamada, A., Matsubara, K., Niki, S., Nakahara, K., Tanabe, T., and Takasu, H., Appl. Phys. Lett. 77, 1801 (2000).Google Scholar
3. Vinh, L. T., Eddrief, M., Sébenne, C. A., Dumas, P., Ibrahimi, A. T., Günther, R., Chabal, Y. J., and Derrien, J., Appl. Phys. Lett. 64, 3308 (1994).Google Scholar
4. Ko, H. J., Chen, Y. F., Ko, J. M., Hanada, T., Zhu, Z., Fukuda, T., and Yao, T., J. Crystal Growth 207, 87 (1999).Google Scholar
5. Bagnali, D. M., Chen, Y. F., Zhu, Z., Yao, T., Shen, M. Y., and Goto, T., Nonlinear Optics 18, 243 (1997).Google Scholar
6. Ko, H. J., Chen, Y. F., Zhu, Z., Yao, T., Kobayashi, I., and Uchiki, H., Appl. Phys. Lett. 76, 1905 (2000).Google Scholar
7. Nakahara, K., Tanabe, T., Takasu, H., Fons, P., Iwata, K., Yamada, A., Matsubara, K., Hunger, R., and Niki, S., Jpn. J. Appl. Phys. 40, 250 (2001).Google Scholar
8. Chen, Y, Hong, S. K., Ko, H. J., Nakajima, M., Yao, T., and Segawa, Y, Appl. Phys. Lett. 76, 245 (2000).Google Scholar
9. Takai, T, Chang, J. H., Godo, K., Hanada, T., and Yao, T., phys. stat. sol. (b) 229, 381 (2002).Google Scholar
10. Sarver, J. F, Katnack, F L., and Hummel, F. A., J. Electrochem. Soc. 106, 960 (1959).Google Scholar
11. Ohtomo, A., Kawasaki, M., Koida, T, Masubuchi, K., Koinuma, H., Sakurai, Y, Yoshida, Y, Yasuda, T, and Segawa, Y, Appl. Phys. Lett. 72, 2466 (1998).Google Scholar
12. Masumoto, Y., Murakami, M., Jin, Z., Ohtomo, A., Lippmaa, M., Kawasaki, M., and Koinuma, H., Jpn. J. Appl. Phys. 38, L603 (1999).Google Scholar
13. Narukawa, Y., Kawakami, Y., Funato, M., Fujita, Sz., Fujita, Sg., and Nakamura, S., Appl. Phys. Lett. 70, 981 (1997).Google Scholar
14. Ogata, K., Kawanishi, T., Maejima, K., Sakurai, K., Fujita, S., and Fujita, S., Jpn. J. Appl. Phys. 40, L657 (2001).Google Scholar
15. Iwata, K., Fons, P., Niki, S., Yamada, A., Matsubara, K., Nakahara, K., Tanabe, T., and Ta-kasu, H., J. Crystal Growth 214/215, 50 (2000).Google Scholar
16. Koike, K., Tanite, T., Sasa, S., Inoue, M., and Yano, M., MRS Symp. Proc. 692, 655 (2002).Google Scholar
17. Sokolov, N. S., Hirai, T., Kawasaki, K., Ohmi, S., Tsutsui, K., Furukawa, S., Takahashi, I., Itoh, Y., and Harada, J., Jpn. J. Appl. Phys. 33, 2395 (1994).Google Scholar
18. Tsutsui, M., Watanabe, M., and Asada, M., Jpn. J. Appl. Phys. 38, L920 (1999).Google Scholar
19. Kawasaki, K. and Tsutsui, K., Jpn. J. Appl. Phys. 38, 1521 (1999).Google Scholar
20. Ong, H. C., Li, A. S. K., and Du, G. T., Appl. Phys. Lett. 78, 2667 (2001).Google Scholar
21. Weimann, N. G., Eastman, L. F., Doppalapudi, D., Ng, H. M., and Moustakas, T. D., J. Appl. Phys. 83, 3656 (1998).Google Scholar
22. Weisberg, L. R., J. Appl. Phys. 33, 1817 (1962).Google Scholar