Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T09:26:03.307Z Has data issue: false hasContentIssue false

ZnGeP2 and its Relation to Other Defect Semiconductors

Published online by Cambridge University Press:  10 February 2011

A. W. Vere
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, [email protected]
L. L. Taylor
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, [email protected]
P. C. Smith
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, [email protected]
C. J. Flynn
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, [email protected]
M. K. Saker
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, [email protected]
J. Jones
Affiliation:
Defence Evaluation and Research Agency (DERA), St Andrews Road, Malvern, Worcestershire, WR14 3PS, [email protected]
Get access

Abstract

The paper discusses progress in the development of ZnGeP2 (ZGP) for optical parametric oscillator (OPO) applications and draws parallels with other semiconductors with volatile components, in which the presence of lattice defects gives rise to non-stoichiometry. In particular, attention is drawn to the microprecipitation which accompanies deviation from stoichiometry. In other materials this has been shown to result in spatial non-uniformity in the density of point defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Masumoto, K., Isomura, S. and Goto, W., J. Phys. Chem. Sol. 27, p1939 (1966).Google Scholar
2. Beuhler, E., Wernick, J. and Wiley, T., J. Electron. Mater. 2 (3) p.445 (1973)Google Scholar
3. Vodopyamov, K. L., Voevodin, V. G., Gribenyukov, A. I. and Kulevskii, L. A., Sov. J. Quantum Electron., 17, p1159 (1987).Google Scholar
4. Feigelson, R. S. and Route, R. K., J. Cryst. Growth, 49, p261 (1980).Google Scholar
5. Xing, C. C. and Bachmann, K. J., J. Cryst. Growth, 147, p35 (1995).Google Scholar
6. Schunemann, P. G. and Pollak, T. M., OSA Proceedings on Advanced Solid State Lasers, 10, (Eds. Dubé, G. and Chase, L.), Hilton Head South Carolina, March 18–20 (1991).Google Scholar
7. Verozubova, G. A., Gribenyukov, A. I., Korotkova, V. V. and Ruzaikin, M. P., Proc. Internat Workshop on Stoichiometry in Compound Semiconductors, Bad Suhl, Germany 1995 (unpublished)Google Scholar
8. Schunemann, P. G., Budni, P. A., Pomeranz, L., Knights, M.G., Pollak, T.M. and Chicklis, E.P. in Advanced Solid State Lasers, edited by Pollock, C.R. and Bosenberg, W.R. OSA Top. Proc. 10 pp253255 (1997)Google Scholar
9. Halliburton, C. E., Edwards, G. J., Scripsick, P. P., Rakowsky, M. P., Schunemann, P. G. and Pollak, T. M., Appl. Phys. Lett., 66 (20), p2670 (1995).Google Scholar
10. Dietz, N., Tsveybak, I., Ruderman, W., Wood, G. and Bachmann, K. J., Appl. Phys. Lett., 65 (22), p2759 (1994).Google Scholar
12. Chen, NuoFu, He, Hongjia, Wang, Yutian and Lin, Lanying, J. Cryst. Growth, 173, p325 (1997).Google Scholar
13. Cullis, A. G., Augustus, P. D., Stirland, D. J., J. Appl. Phys., 51, p2556 (1980).Google Scholar
14. Pautrat, J. L., Magnea, N. and Faurie, J. P., J. Appl. Phys., 53 (12), p8668 (1982).Google Scholar
15. Williams, D. J. and Vere, A. W., J. Vac. Sci. Technol., A4 (4), p2184 (1986).Google Scholar
16. Vere, A. W., Crystal Growth, Principles and Progress, Plenum Press, London & New York (1987) pp2950 Google Scholar
17. Gentile, A. L. and Stafsudd, D. M., Mater. Res. Bull., 9, p105 (1974).Google Scholar
18. Smith, M. and Grant, I. R., MCP Wafer Technology Final Report UK Government DRA Contract MAL 16/23 10, July 1986.Google Scholar
19. Bliss, D. F., Harris, M., Horrigan, J., Higgins, M. M., Armington, A. F. and Adamski, J. A., J. Cryst. Growth, 137, p145 (1994).Google Scholar
20. Mykytiuk, A. and Semeniuk, P., NRC Institute for Environmental Chemistry, Canada (unpublished).Google Scholar
21. Hobgood, H. M., Henningsen, T., Thomas, R. N., Hopkin, R. H., Ohmer, M. C., Mitchel, W. C.. Fischer, D. W., Hegde, S. M. and Hopkins, F. K., J. Appl. Phys., 73 (8), p4030 (1993).Google Scholar
22. Peter Schunemann, G. and Pollak, Thomas M., U.S. Patent No. 5 611 856 (18 March 1997)Google Scholar
23. Vere, A. W., Taylor, L. L., Smith, P. C., Flynn, C. J., Saker, M. K. and Terry, J. A. C., IOP proceedings of the 11 th International Conference on Ternary and Multinary Components, Salford, UK (1997) - In press.Google Scholar
24. Gribenyukov, A., Verozubova, G. and Korotkova, V. - private communication.Google Scholar
25. Fewster, P. F. and Andrew, N. L., J. Appl. Cryst., 28, p 451 (1995).Google Scholar
26. Ray, B., Payne, A. J. and Burrell, G. F., Phys. Stat. Sol., 35, p197 (1969).Google Scholar
27. Voevodin, V.G. and Voevodina, O.V., J. Russ. Phys. 36 (10) p924 (1993)Google Scholar
28. Hurle, D. T. J., Materials Science Forum, 196–201, p179 (1995).Google Scholar
29. de Nobel, D., Philips Research Rev. 14 (4), p361 (1959).Google Scholar
30. Brown, G. T., Cockayne, B. and MacEwan, W. R., J. Electron. Mater., 12, p93 (1983).Google Scholar