Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T06:47:49.902Z Has data issue: false hasContentIssue false

Zero Hysteresis in Shape-Memory TI-NI-X Films (X = CU, PD) Under Constraint

Published online by Cambridge University Press:  15 February 2011

B. Winzek
Affiliation:
Stiftung caesar, Postfach 7025, 53070 Bonn, Germany
E. Quandt
Affiliation:
Stiftung caesar, Postfach 7025, 53070 Bonn, Germany
Get access

Abstract

The hysteresis of thin film shape memory actuators affects the frequency of actuators switching between martensite and austenite. Therefore the hysteresis properties of thin films of TiNi, Ti(Ni,Cu) and Ti(NiPd) deposited onto metallic substrates by DC-Magnetron sputtering have been investigated. The substrates have different expansion coefficients to establish biaxial tensile and compressive film stresses, respectively. The results show, that the hysteresis width is significantly affected by the stress state of the shape memory film and in principal depends on the temperature range of measurement. In contrast, the difference Af-Mf remains unchanged. In some alloys zero hysteresis width could be obtained.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Melton, K.N., Engineering aspects of shape memory alloys, Butterworth-Heinemann (1990), p. 2135.10.1016/B978-0-7506-1009-4.50006-8Google Scholar
2 Walker, J.A., Gabriel, K.J., Mehregany, M., Sensors and Actuators, A21–A23 (1990) p. 243246.10.1016/0924-4247(90)85047-8Google Scholar
3 Johnson, D., Shahoian, E. J., Proc. MEMS '95, Amsterdam (1995) p. 216220.Google Scholar
4 Kohl, M., Dittmann, D., Quandt, E., Winzek, B., Miyazaki, S., Allen, D.M., Icomat 98, (1998).Google Scholar
5 Benard, W.L., Kahn, H., Heuer, A.H., Huff, M.A., Transducers '97, Chicago (1997) p. 361364.Google Scholar
6 Krulevitch, P., Lee, A.P., Ramsey, P.B., Trevino, J. C., Hamilton, J., Northrup, M.A., J. of Microelectromechanical Systems, Vol. 5, No. 4, (1996) p. 270282.10.1109/84.546407Google Scholar
7 Hashinaga, T., Miyazaki, S., Ueki, T., Horikawa, H., Journal de Physique IV C8 Vol. 5 (1995) p. 689694.Google Scholar
8 Quandt, E., Halene, C., Holleck, H., Feit, K., Kohl, M., Schlolmacher, P., Skokan, A., Skrobanek, K.D., Sensors and Actuators A 53 (1996) p. 434439 10.1016/0924-4247(96)01147-8Google Scholar
9 Kim, T., Su, Q., Wuttig, M., Mat. Res. Soc. Symp. Proc. Vol. 360 (1995) p. 375380.10.1557/PROC-360-375Google Scholar
10 Zhang, J., Grummon, D.S., Mat. Res. Soc. Symp. Proc. Vol. 459 (1997) p. 451457.10.1557/PROC-459-451Google Scholar
11 , Winzek, Quandt, E., Holleck, H., Actuator 98, Bremen (1998) p. 461464.Google Scholar
12 , Winzek, Quandt, E., Zeitschrift für Metallkunde Vol. 90 (1999) p. 796802.Google Scholar
13 Roytburd, A.L., Kim, T.S., Su, Q., Slutsker, J., Wuttig, M., Acta. Mat. (1998) p. 50955107.10.1016/S1359-6454(98)00165-7Google Scholar