Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-27T06:46:45.665Z Has data issue: false hasContentIssue false

YIG Thin Film-Based Two-Dimensional Magnonic and Magneto-Photonic Crystals

Published online by Cambridge University Press:  01 February 2011

S.A. Nikitov
Affiliation:
Institute of Radieengineering and Electronics, Russian Academy of Sciences, 11, Mokhovaya St., Moscow, Center, 101999, Russia
C.S. Tsai
Affiliation:
Department of Electrical and Computer Engineering, University of California, Irvine, CA 92697, USA and Electrooptic Engineering Institute, National Taiwan University
Yu.V. Gulyaev
Affiliation:
Institute of Radieengineering and Electronics, Russian Academy of Sciences, 11, Mokhovaya St., Moscow, Center, 101999, Russia
Yu.A. Filimonov
Affiliation:
Institute of Radieengineering and Electronics, Russian Academy of Sciences, 11, Mokhovaya St., Moscow, Center, 101999, Russia
A.I. Volkov
Affiliation:
Institute of Radieengineering and Electronics, Russian Academy of Sciences, 11, Mokhovaya St., Moscow, Center, 101999, Russia
S.L. Vysotskii
Affiliation:
Institute of Radieengineering and Electronics, Russian Academy of Sciences, 11, Mokhovaya St., Moscow, Center, 101999, Russia
Ph. Tailhades
Affiliation:
CIRIMAT-UMR CNRS 5085-Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, France
Get access

Abstract

A new type of photonic crystals entitled “magnonic crystals (MC)” that exhibit forbidden gaps in the microwave spectrum of magnetostatic spin waves (MSW) are reported. The topography of the MCs that consist of two-dimensional (2-D) etched holes periodic structure in yttrium iron garnet films was studied by atomic force and magnetic force magnetometry. The propagation characteristics of spin waves in such 2-D MCs was measured and analyzed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Joannopoulos, J.D., Meade, R.D., Winn, J.N., Photonic Crystals: Molding the Flow of Light (Princetone University Press, Princeton, 1995).Google Scholar
2. Jacoby, M., Chem. Eng. News 76 (47) (1998) 38.Google Scholar
3. Grant, B., Photon Spectra 33 (5) (1999) 33.Google Scholar
4. Psarobas, I.E., Stefanou, N., Modinos, A., Phys. Rev. B 62 (2000) 5536.Google Scholar
5. Inoue, M., Arai, K.I., Abe, M., Fujii, T., Fan, S., Joannopoulos, J.D., Magn, J.. Soc. Jpn. 23 (1999)1861.Google Scholar
6. Inoue, M., Fujii, T., J. Appl. Phys. 85 (1999) 5768.Google Scholar
7. Prinz, G.A., Magn, J. Magn. Mater. 200 (1999) 57.Google Scholar
8. Sykes, C.G., Adam, J.D., Collins, J.H., Appl. Phys. Lett. 29 (1976) 388.Google Scholar
9. Gulyaev, Yu.V., Nikitov, S.A., Plesskii, V.P., Sov. Phys. Solid State 23 (1981) 724.Google Scholar
10. Camley, R.E., Rahman, T.S., Mills, D.L., Phys. Rev B 27 (1983) 261.Google Scholar
11. Vittoria, C., Phys. Rev. B 32 (1985) 1679.Google Scholar
12. van Stapele, R.P., Greidanus, F.J.A.M., Smith, J.W., J. Appl. Phys. 57 (1985) 1282.Google Scholar
13. Vaihinger, K., Kronmueller, H., J. Magn. Magn. Mater. 62 (1986) 159.Google Scholar
14. Dobrzynski, L., Djafari-Rouhani, B., Puszkarski, H., Phys. Rev. B 33 (1986) 3251.Google Scholar
15. Camley, R.E., Cottam, M.G., Phys. Rev. B 35 (1987) 189.Google Scholar
16. Barnas, J., Phys. Rev B 45 (1992) 10427; J. Phys.: Cond. Matter 4 (1992) 4849.Google Scholar
17. Gorobetz, Yu.I., Zyubanov, A.E., Kuchko, A.N., Shedzhuri, K.D., Sov. Phys. Solid State 34 (1992) 790.Google Scholar
18. Erukhimov, M.S., Erukhimov, G.M., Berenshtein, B.E., Phys. Solid State 36 (1994) 886.Google Scholar
19. Gorobetz, Yu.I., Kuchko, A.N., Reshetnyak, S.A., Phys. Solid State 38 (1996) 315.Google Scholar
20. Krishnan, R., Sella, C., Kaabouchi, H., Acharaya, B.A., Prasad, S., Ventkatraman, N., J. Magn. Magn. Mater. 104–107 (1992) 1882.Google Scholar
21. Kordecki, R., Meckenstock, R., Pelzl, J., Muhlbauer, H., Dumpich, G., Nikitov, S., J. Appl. Phys. 70 (1991) 6418.Google Scholar
22. Zilberman, P.E., Temiryazev, A.G., Tikhomirova, M.N., JEPT 81 (1995) 151.Google Scholar
23. Figotin, A. and Vitebsky, I., Phys. Rev. E 63 (2001) 066609.Google Scholar
24. Lyubchanskii, I.L., Dadoenkova, N.N., Lyubchanskii, M.I., Shapovalov, E.A., Rasing, Th., J. Phys. D: Appl. Phys. 36 (2003) R277.Google Scholar
25. Nikitov, S.A., Tailhades, Ph., Tsai, C.S., Magn, J. Magn. Mater. 236 (2001) 320.Google Scholar
26. Gulyaev, Yu.V., Nikitov, S. A., Zhivotovski, L. V., Klimov, A. A., Tailhades, Ph., Presmanes, L., Bonningue, C., Tsai, C. S., Vysotsky, S. L., Filimonov, Yu.A., JETP Lett., 77 (2003) 567.Google Scholar