Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T08:36:03.822Z Has data issue: false hasContentIssue false

Y-Doping Effects on the Dielectric Behavior of RF-Sputtered BST Thin Films

Published online by Cambridge University Press:  01 February 2011

Ruey-Ven Wang
Affiliation:
Department of Materials Science and Engineering, Stanford University, CA, USA
Paul C. McIntyre
Affiliation:
Department of Materials Science and Engineering, Stanford University, CA, USA
John D. Baniecki
Affiliation:
Fujitsu Laboratories, Atsugi, Japan
Kenji Nomura
Affiliation:
Fujitsu Laboratories, Atsugi, Japan
Takeshi Shioga
Affiliation:
Fujitsu Laboratories, Atsugi, Japan
Kazuaki Kurihara
Affiliation:
Fujitsu Laboratories, Atsugi, Japan
Get access

Abstract

High dielectric constant, perovskite-structure materials, such as barium strontium titanate (BST), have been widely investigated for use in GHz LSI decoupling capacitor applications. In addition to modifying deposition process parameters, such as increasing deposition temperature, doping may be a viable way to increase permittivity and tunability in BST thin films without increasing the thermal budget. In this research, the effects of Y dopants on the dielectric behavior of RF-sputtered BST thin films have been systematically investigated. The BST thin films were deposited using ceramic targets with different compositions of yttrium oxide dopant. With Y-doping concentration of ∼ 1.3 at.%, the permittivity at around zero electrical fields can be increased by more than 70% compared to nominally undoped BST thin films produced under the same deposition conditions. Based on x-ray diffraction strain analysis and inductively-coupled plasma composition measurements, the correlations among the dopant composition, BST film elastic strain and dielectric behavior have been systematically studied.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1 Yamamichi, S., Sato Habuta, H., Sakuma, Toshiyuki, and Miyasaka, Y., Appl. Phys. Lett. 82, 1644 (1994)Google Scholar
2 Choi, W.-Y., Tsur, Y., Randall, C. A., and Trolier-McKinstry, S., Mat. Res. Soc. Symp. Proc. 596, 487 (2000)Google Scholar
3 Zhi, J., Chen, A., Zhi, Y., Vilarinho, P. M., and Baptista, J. L., J. Am. Ceram. Soc. 82, 1345 (1999); J. Appl. Phys. 84, 983 (1998)Google Scholar
4 Sato, S., Nakano, Y., Sato, A., and Nomura, T., Jpn. J. Appl. Phys. 36, 6016 (1997)Google Scholar
5 Makovec, D., Samardžija, Z., and Drofenik, M., J. Am. Ceram. Soc. 87[7], 1324 (2004)Google Scholar
6 Tenne, D. T., Soukiassian, A., Xi, X. X., Taylor, T. R., Hansen, P. J., Speck, J. S., and York, R. A., Appl. Phys. Lett. 85, 4142 (2004)Google Scholar
7 Ban, Z.-G., and Alpay, S. P., J. Appl. Phys. 93, 504 (2003)Google Scholar
8 Shaw, T. M., Suo, Z., Huang, M., Liniger, E., Laibowitz, R. B., and Baniecki, J. D., Appl. Phhys. Lett. 75, 2129 (1999)Google Scholar
9 Chang, W., Gilmore, A. M., Kim, W.-J., Pond, J. M., Kirchoefer, S. W., Qadri, S. B., Chirsey, D. B., and Horwitz, J. S., J. Appl. Phys. 87, 3044 (2000)Google Scholar
10 Huang, H., Thesis, Harvard University (1998)Google Scholar
11 Welzel, U. and Mittemeijer, E. J., Mater. Sci. Forum 443, 131 (2004)Google Scholar
12 Ban, Z.-G. and Alpay, S. P., J. Appl. Phys. 91, 9288 (2000)Google Scholar
13 Streiffer, S. K., Basceri, C., Parker, C. B., Lash, S. E., and Kingon, A. I., J. Appl. Phys. 86, 4565 (1999)Google Scholar
14 Baniecki, J.D., Parks, C., Laibowitz, R.B., Shaw, T.M., and Lian, J., Mater. Res. Soc. Symp. Proc. 655, CC6 (2001)Google Scholar
15 Werner, M. C., Banerjee, I., McIntyre, P. C., Tani, N. and Tanimura, M., Appl. Phys. Lett. 77, 1209 (2000)Google Scholar