Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-20T01:20:45.278Z Has data issue: false hasContentIssue false

X-RAY DIFFRACTION CHARACTERIZATION OF ELASTIC STRAIN IN COMPOSITION MODULATED LAYERED STRUCTURES

Published online by Cambridge University Press:  28 February 2011

A. F. JANKOWSKI
Affiliation:
Rockwell International, North American Space Operations, Rocky Flats Plant, P.O. Box 464, Golden, CO 80402-0464
P. A. STEINMEYER
Affiliation:
Rockwell International, North American Space Operations, Rocky Flats Plant, P.O. Box 464, Golden, CO 80402-0464
Get access

Abstract

X-ray diffraction techniques are utilized to characterize the biaxial state of stress in thermal vapor deposited, composition modulated layered structures. Thin film systems, as Au-Ni, Cu-Pd, Ag-Pd, Cu-Ni and Cu-NiFe, have manifested the ‘supermodulus effect’ as a mechanical property. The concept of interlayer coherency gives rise to the notion of accommodating misfit strains between the layers. In turn, such large elastic strains have been shown to cause large increases in the elastic moduli (the ‘supermodulus effect’) of noble metals. In the present work, pole figures are used to determine the texture and crystallographic orientations of these foils, and standard x-ray methods are then used to quantify this strain with lattice parameter measurements and diffraction peak profiles.

Type
Research Article
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Yang, W. M. C., Tsakalakos, T. and Hilliard, J. E., J. Appl. Phys. 48, 876 (1977).Google Scholar
2. Henein, G. E. and Hilliard, J. E., J. Appl. Phys. 54, 728 (1983).Google Scholar
3. Jankowski, A. F. and Tsakalakos, T., J. Appl. Phys. 57, 1835 (1985).Google Scholar
4. Jesser, W. A., Matthews, J. W. and Kuhlmann-Wilsdorf, D., Appl. Phys. Lett. 9, 176 (1966).Google Scholar
5. Ievlev, V. M., Bugakov, A. V. and K. S. Solov'ev, Sov. Phys. Solid State 18, 42 (1976).Google Scholar
6. Matthews, J. W. and Crawford, J. L., Thin Solid Films 5, 187 (1970).Google Scholar
7. Shinohara, K. and Hirth, J. P., Thin Solid Films 16, 345 (1973).Google Scholar
8. Cook, M. E. and Hilliard, J. E., J. Appl. Phys. 40, 2192 (1969).Google Scholar
9. Baral, D., Ketterson, J. B. and Hilliard, J. E., Modulated Structure Materials, edited by T. Tsakalakos (Martinus Nijhoff, Dordrecht, 1984) p. 465.Google Scholar
10. Tsakalakos, T. and Hilliard, J. E., J. Appl. Phys. 54, 734 (1983).Google Scholar
11. Matthews, J. W., Phil. Mag. 13, 1207 (1966).Google Scholar
12. Matthews, J. W. and Jesser, W. A., Acta. Met. 15, 595 (1967).Google Scholar
13. Jankowski, A. F. and Tsakalakos, T., J. Phys. F: Met. Phys. 15, 1279 (1985).Google Scholar