Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T01:13:16.078Z Has data issue: false hasContentIssue false

X-ray Diffraction and Modelling Studies of Multilayer SnO2 Thin Film Gas Sensors

Published online by Cambridge University Press:  15 February 2011

L. E. Depero
Affiliation:
Istituto Nazionale di Fisica per la Materia and Dipartimento di Chimica e Fisica per i Materiali, UniversitA di Brescia, Via Branze, 38 - 25123 Brescia, ITALY
C. Perego
Affiliation:
Istituto Nazionale di Fisica per la Materia and Dipartimento di Chimica e Fisica per i Materiali, UniversitA di Brescia, Via Branze, 38 - 25123 Brescia, ITALY
L. Sangaletti
Affiliation:
Istituto Nazionale di Fisica per la Materia and Dipartimento di Chimica e Fisica per i Materiali, UniversitA di Brescia, Via Branze, 38 - 25123 Brescia, ITALY
G. Sberveglieri
Affiliation:
Istituto Nazionale di Fisica per la Materia and Dipartimento di Chimica e Fisica per i Materiali, UniversitA di Brescia, Via Branze, 38 - 25123 Brescia, ITALY
Get access

Abstract

Structural studies have been carried out on SnO2 multilayer thin film grown by the Rheotaxial Growth and Thermal Oxidation method on A120 3 substrates. A preliminary analysis of the X-ray diffraction patterns shows that, in addition to the Sn0 2 cassiterite phase, a strong contribution from an orthorhombic Sn02 phase is present.

In the case of the 3-layer film, the orthorhombic phase is structurally and microstructurally stable after an annealing up to 32 h at 400 'C. The cation coordination is similar to that found in cassiterite, but the chains of edge-sharing [SnO6]8- octahedra run in a zig-zag fashion along the [100] direction, each straight unit containing four octahedra. The relationship between the two phases is discussed on the basis of structural simulations including twinning planes in the crystal structure.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sberveglieri, G., Faglia, G., Groppelli, S., Nelli, P. and Taroni, A., Sensors and Actuators B 2, 721 (1992)Google Scholar
2. Sberveglieri, G. and Nelli, P., in: Fundamental Properties of Nanostructured Materials, edited by Fiorani, D. and Sberveglieri, G. (World Scientific, Singapore, 1994), p. 288-302 Google Scholar
3. Hellmich, W., Braunmuhl, Ch. Bosch - v., Muller, G., Sberveglieri, G, Berti, M., Perego, C.. Thin Solid Films, 263, 231 (1995)Google Scholar
4. ICSD Inorganic Crystal Structure Database, G'melin Institut and FIZ Karlsruhe, Release 94/1; PDF Powder Diffraction File Database, JSPDS - International Centre for Diffraction Data, Swarthmore - PA (1994)Google Scholar
5 Depero, L.E., Perego, C., Sangaletti, L., and Sberveglieri, G., to be published in the Proceedings of the 41h European Conference on Advanced Materials and Processes;Google Scholar
6. Sberveglieri, G. et al, unpublished results 7. Hyde, B.G., Andersson, S., Inorganic Crystal Structures, (Wiley and Sons, 1989) p.100 Google Scholar
8. Romano-Rodriguez, A., private communicationGoogle Scholar
9. Burdett, J K., Acta Cryst. B 51, 547 (1995)Google Scholar