Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:07:42.510Z Has data issue: false hasContentIssue false

X-RAY Diagnostics of Large-Period Lattice-Matched InGaAs/InP Superlattices

Published online by Cambridge University Press:  25 February 2011

J. M. Vandenberg
Affiliation:
AT'T Bell Laboratories, Murray Hill, New Jersey 07974.
D. Rttter
Affiliation:
AT'T Bell Laboratories, Murray Hill, New Jersey 07974.
R. A. Hamm
Affiliation:
AT'T Bell Laboratories, Murray Hill, New Jersey 07974.
S. N. G. Chu
Affiliation:
AT'T Bell Laboratories, Murray Hill, New Jersey 07974.
M. B. Panish
Affiliation:
AT'T Bell Laboratories, Murray Hill, New Jersey 07974.
Get access

Abstract

The interfacial structure of InGaAs/InP superlattices grown on (100) InP by metalorganic molecular beam epitaxy has been studied by fully dynamical simulations of high-resolution x-ray diffraction curves of the (200) and (400) reflectjon. The superlattice under investigation is lattice-matched and has a long period of ∼630Å. This kind of structure creates a very symmetrical x-ray pattern enveloping a large number of closely spaced satellite intensities with pronounced maxima and minima. It appears in the dynamical analysis that the position and shape of these maxima and minima is extremely sensitive to the number N of monolayers and atomic spacing d of the InGaAs and InP layer, as well as the presence of interfacial layers and impurities.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vandenberg, J. M., Panish, M. B., Temkin, H., and Hamm, R. A., Appl. Phys. Lett. 53, 1920 (1988).Google Scholar
2. Lyons, M. H., Scott, E. G., and Halliwell, M. A. G., in Microscopy of Semiconducting Materials, Institute of Physics Conference Series 100, Oxford, 1989, edited by Cullis, A. G. and Hutchinson, J. L. (IOP, Bristol, 1989), Sec. 6, p. 473.Google Scholar
3. Vandenberg, J. M., Panish, M. B., Hamm, R. A. and Temkin, H., Appl. Phys. Lett. 56, 910 (1990).Google Scholar
4. Halliwell, M. A. G. and Lyon, M. H., SOTAPOCS XII and Superlattice Structures and Devices, Proc. Vol. 90–15, edited by D'Avanso, D. C., Enstrom, R. E., Macrander, A. T. and De Coster, D., (Electrochem. Soc. Inc. 1990) p. 385.Google Scholar
5. Vandenberg, J. M., Macrander, A. T., Hamm, R. A. and Panish, M. B., Phys. Rev. B44, 3991 (1991).Google Scholar
6. Ritter, D., Hamm, R. A., Panish, M. B., Vandenberg, J. M., Gershoni, D., Gunapala, S. D., and Levine, B. F., Appl. Phys. Lett. 59, 552 (1991).Google Scholar
7. Macrander, A. T., Minami, E. R., and Berreman, D. W., J. Appl. Phys. 60, 1364 (1986).Google Scholar
8. Vandenberg, J. M., Macrander, A. T., Chu, S. N. G., Hamm, R. A., Panish, M. B. and Ritter, D., Mat. Res. Soc. Symp. Proc. 240, 141 (1992).Google Scholar