Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-20T09:29:39.128Z Has data issue: false hasContentIssue false

XPS study of sub-monolayer native oxide on HF-treated Si Surfaces

Published online by Cambridge University Press:  21 February 2011

F. Yano
Affiliation:
Hitachi, Ltd., Central Research Laboratory, Kokubunji, Tokyo 185, Japan
A. Hiraoka
Affiliation:
Hitachi, Ltd., Central Research Laboratory, Kokubunji, Tokyo 185, Japan
T. Itoga
Affiliation:
Hitachi, Ltd., Central Research Laboratory, Kokubunji, Tokyo 185, Japan
H. Kojima
Affiliation:
Hitachi, Ltd., Central Research Laboratory, Kokubunji, Tokyo 185, Japan
K. Kanehori
Affiliation:
Hitachi, Ltd., Central Research Laboratory, Kokubunji, Tokyo 185, Japan
Y. Mitsui
Affiliation:
Hitachi, Ltd., Semiconductor and Integrated Circuits Division, Kodaira, Tokyo 187, Japan
Get access

Abstract

Sub-monolayer native oxide on Si is quantitatively characterized by conventional XPS, us-ing an Ols binding energy as a reference in spectrum decomposition of Si2p. This gives the average thicknesses of Si dioxide and Si suboxide in the sub-monolayer region. Using mis tech-nique, we investigate various native oxidation processes. We have found that oxygen dissolved in the HF solution influences native oxidation speed afterward. Furthermore As implantation at high concentrations (2 × 1015 cm-2) in Si dramatically changes the oxidation process: the layer-by-layer feature clearly observed in undoped samples is entirely obscured in implanted samples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Takahagi, T., Nagai, I., Ishitani, A. and Kuroda, H., J. Appl. Phys. 64, 3516 (1988).Google Scholar
2. Higashi, G. S., Chanbel, Y. J., Trucks, G. W. and Raghavachari, K., Appl. Phys. Lett. 56, 656 (1990).Google Scholar
3. Morita, M., Ohmi, T., Hasegawa, E., Kawakami, M. and Ohwada, M., J. Appl. Phys. 68, 1272 (1990).Google Scholar
4. Hattori, T., Ext. Abstr., Int. Conf. Solid State Devices and Materials, Yokohama, 410 (1994).Google Scholar
5. Chabel, Y. J., Higashi, G. S., Raghavachari, K. and Burrows, V. A., J. Vac. Sci. Technol., A7, 2104 (1989).Google Scholar
6. Itoga, T., Hiraoka, A., Yano, F., Yugami, J. and Ohkura, M., Ext Abstr., Int. Conf. Solid State Devices and Materials, Yokohama, 667 (1994).Google Scholar
7. Yano, F., Hiraoka, A., Itoga, T., Kojima, H., Kanehori, K. and Mitsui, Y., submitted to J. Vac. Sci. Technol.Google Scholar
8. Ishizaka, A. and Iwata, S., Appl. Phys. Lett., 36, 71 (1980).Google Scholar
9. Muto, A., Mine, T. and Nakazawa, M., Jpn. J. Appl. Phys. 32, 3580 (1993).Google Scholar
10. Muto, A., Yano, F., Sugawara, Y. and Iijima, S., Jpn. J. Appl. Phys. 33, 2699 (1994).Google Scholar
11. Fadley, C. S., J. Electron Spectrosc. 5, 725 (1974).Google Scholar
12. Taft, E. A., J. Electrochem. Soc. 135, 1022 (1987).Google Scholar
13. Yasaka, T., Kanda, K., Sawara, K., Miyazaki, S. and Hirose, M., Jpn. J. Appl. Phys. 30, 3567 (1991).Google Scholar
14. Yano, F., Hiraoka, A., Itoga, T., Matsubara, A., Kojima, H., Kanehori, K. and Mitsui, Y., to be submitted to J. Vac. Sci. Technol.Google Scholar