Published online by Cambridge University Press: 26 July 2012
An inverse Hall-Petch effect has been observed for nanocrystalline materials by a large number of researchers. This result implies that nanocrystalline materials get softer as grain size is reduced below a critical value. Postulated explanations for this behavior include dislocation based mechanisms and diffusion based mechanisms. In this paper, we report an explanation for the inverse Hall-Petch effect based on the statistical absorption of dislocations by grain boundaries, showing that the yield strength is both dependent on strain rate and temperature, and that it deviates from the Hall-Petch relationship at a critical grain size.