Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-27T01:45:00.434Z Has data issue: false hasContentIssue false

What is Behind the Inverse Hall-Petch Behavior in Nanocrystalline Materials?

Published online by Cambridge University Press:  26 July 2012

Christopher Carlton
Affiliation:
[email protected], University of Texas at Austin, University of Texas at Austin, 1 University Station, Austin, TX, 78705, United States
P. J. Ferreira
Affiliation:
[email protected], University of Texas at Austin, Material Science and Engineering Program, 1 University Station, Austin, TX, 78705, United States
Get access

Abstract

An inverse Hall-Petch effect has been observed for nanocrystalline materials by a large number of researchers. This result implies that nanocrystalline materials get softer as grain size is reduced below a critical value. Postulated explanations for this behavior include dislocation based mechanisms and diffusion based mechanisms. In this paper, we report an explanation for the inverse Hall-Petch effect based on the statistical absorption of dislocations by grain boundaries, showing that the yield strength is both dependent on strain rate and temperature, and that it deviates from the Hall-Petch relationship at a critical grain size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hall, E.O., Proceedings of the Physical Society of London, B64, 747, (1951).Google Scholar
2. Petch, N.J., Journal of the Iron Steel Institute, 25, 174, (1953).Google Scholar
3. Chokski, A.H., Rosen, A., Karch, J., Gleiter, H., Scripta Met., 23, 1679, (1989).Google Scholar
4. El-Sherik, A.M., Erb, U., Palumbo, G., Aust, K.T., Scripta Mat., 27, 1185, (1992)Google Scholar
5. Gertsman, V.Y., Hoffmann, M., Gleiter, H., Dirringer, R., Acta Materialia, 42, 3539, (1994).Google Scholar
6. Sanders, P.G., Eastman, J.A., Weertman, J.R., Acta Materialia, 10, 4019, (1997).Google Scholar
7. Schwaiger, R., Moser, B., Dao, M., Chollacoop, N., Suresh, S., Acta Materialia, 51, 5159, (2003).Google Scholar
8. Wang, N., Wang, Z., Aust, K.T., Erb, U., Materials Science and Eng. A, 237, 150, (1997).Google Scholar
9. Ebrahimi, F., Bourne, G.R., Kelly, M.S., Matthews, T.E., Nanostructured Materials, 11, 343, (1999).Google Scholar
10. Xiao, C., Mirshams, R.A., Whang, S.H., Yin, W.M., Materials Science and Eng. A, 301, 35, (2001).Google Scholar
11. Schuh, C.A., Nieh, T.G., Yamasaki, T., Scripta Materialia, 46, 735, (2002)Google Scholar
12. “Mechanical Behavior of Nanocrystalline Metals", in Nanostructured Materials, Carl Koch, Ed., Noyes Publications, Norwich, NY (2002) pp 393–417Google Scholar
13. Scattergood, R.O., Koch, C.C., Scripta Met. et Mat., 27, 1195, (1992)Google Scholar
14. Lian, , Buadelet, B., Nazarov, A., Mat. Sci. Eng. A, 172, 23, (1993)Google Scholar
15. Malygin, G.A., Physics of the Solid State, 37, 1248, (1995).Google Scholar
16. Yamakov, V., Wolf, D., Phillpot, S.R., Muckherjee, A.K., Nature Materials, 1, 1, (2002)Google Scholar
17. Schiotz, J., Jacobsen, K., Science, 301, 1357, (2003)Google Scholar
18. Masamura, R.A., Hazzledine, P.M., Liaw, P.K., Lavernia, E.J., Acta Met., 13, 4527, (1998)Google Scholar
19. Conrad, H., Narayan, J., Scripta Materialia, 42, 1025, (2000).Google Scholar
20. Van Swygenhoven, H., Spaczer, M., Caro, A., Acta Materialia, 47, 3117, (1999).Google Scholar
21. Takeuchi, S., Scripta Mat., 44, 1483, (2001).Google Scholar
22. Yamakov, V., Wolf, D., Salazar, M., Phillpot, S.R., Gleiter, H., Phil. Mag. Lett., Philosophical Magazine Letters, 83, 385, (2003).Google Scholar
23. Yamakov, V., Wolf, D., Phillpot, S.R., Mukherjee, A.K., Gleiter, H., Nature Materials, 3, 43, (2004).Google Scholar
24. Lu, K., Sui, M.L., Scripta Mat., 28, 1465, (1993).Google Scholar
25. Wang, Ning, Wang, Zhirui, Aust, T., Erb, U., Acta Met. Mat., 43, 519523, (1995)Google Scholar
26. Konstantinidis, D.A., Aifantis, E.C., Nanostructured Materials, 10, 1111, (1998).Google Scholar
27. Song, H.W., Guo, S.R., Hu, Z.Q., Nanostructured Materials, 11, 203, (1999).Google Scholar
28. Fan, G.J., Choo, H., Liaw, P.K., Lavernia, E.J., Mat. Sci. Eng. A, 409, 248, (2005)Google Scholar
29. Youngdahl, C.J., Weertman, J.R., Hugo, R.C., Kung, H.H., Scripta Materialia, 44, 14751478.Google Scholar
30. McFadden, Sam X., Sergueeva, Alla V., Kruml, Tomas, Martin, Jean-Lux, Mukherjee, Amiya K., MRS Proceedings, 634, B1.2, (2001)Google Scholar
31. Shan, Zhiwei, Stach, E.A., Wiezorek, J.M.K., Knapp, J.A., Follstaedt, D.M., Mao, S.X., Science, 305, 654657, (2004)Google Scholar
32. Hattar, K., han, J., Saif, M.T.A., Robertson, I.M., J. Mater. Res., Vol. 20, 18691877, (2005)Google Scholar
33. Hugo, R.C., Kung, H.H., Weertman, J.R., Mitra, R., Knapp, J.A., Follstaedt, D.M., “In-Situ TEM Tensile Testing of DC Magnetron Sputtered and Pulsed Laser Deposited Ni Thin Films”, Acta Materialia, 51, 1937, (2003)Google Scholar
34. Kumar, K.S., Suresh, S., Chisholm, M.F., Horton, J.A., Wang, P., “Deformation of Electrodeposited Nanocrystalline Nickel”, Acta Materialia, 51, 387, (2003).Google Scholar
35. Kumar, K.S., Van Swygenhoven, H., Suresh, S., Acta Materialia, 51, 5743, (2003).Google Scholar
36. Siegel, R.W., Thomas, G J, Ultramicroscopy, 46, 376, (1992).Google Scholar
37. Van Swygenhoven, H., Farkas, D., Caro, A., Phys. Rev. B, 62, 831, (2000).Google Scholar
38. Hughes, G.D., Smith, S.D., Pande, C.S., Johnson, H.R., Armstrong, R.W., Scripta Met., 20, 93, (1986).Google Scholar