Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T15:38:14.809Z Has data issue: false hasContentIssue false

Wavelet Based Structural Analysis of Electroless Deposits in the Diffusion Limited Regime

Published online by Cambridge University Press:  03 September 2012

A. Arneodo
Affiliation:
Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France
F. Argoul
Affiliation:
Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France
A. Kuhn
Affiliation:
Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France
J.F. Muzy
Affiliation:
Centre de Recherche Paul Pascal, Avenue Schweitzer, 33600 Pessac, France
Get access

Abstract

We discuss the actual relevance of thin gap geometry electrodeposition to generate fractal patterns that mimic the morphology of Witten and Sander's diffusion-limited aggregates (DLA). Eliminating migration and convection, as well as electrochemical side reactions, we show that electroless deposition is a good candidate to meet the requirements for diffusion to be the rate limiting step of the growth process. We use the wavelet transform microscope to achieve a comparative structural characterization of both experimental electroless deposits and numerical DLA clusters. The fact that five-fold symmetry and Fibonacci hierarchical ordering are found as common predominant statistical features is, to our knowledge, the first demonstration, relying on an appropriate structural fractal analysis, of the existence of DLA morphologies in an experimental context.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Stanley, H.E. and Ostrowsky, N., eds., On Growth and Form: Fractal and Nonfractal Patterns in Physics (Martinus Nijhof, Dordrecht, 1986); Random Fluctuations and Pattern Growth (Kluwer, Dordrecht, 1988).Google Scholar
2. Pietronero, L. and Tosatti, E., eds., Fractals in Physics (North Holland, Amsterdam, 1986).Google Scholar
3. Guttinger, W. and Dangelmayr, D., eds., The Physics of Structure Formation (Springer-Verlag, Berlin, 1987).Google Scholar
4. Feder, J., Fractals (Pergamon, New York, 1988).Google Scholar
5. Vicsek, T., Fractal Growth Phenomena (World Scientific, Singapore, 1989).Google Scholar
6. Bunde, A. and Havlin, S., Fractals and Disordered Systems (Springer-Verlag, Berlin, 1991)Google Scholar
7. Garcia-Ruiz, J.M., Louis, E., Meakin, P. and Sander, L.M., eds., Growth Patterns in Physical Sciences and Biology (Plenum, New York, 1993).Google Scholar
8. Witten, T. and Sander, L.M., Phys. Rev. Lett 47, 1400 (1981); Phys. Rev. B 27, 5686 (1983).Google Scholar
9. Meakin, P., in Phase Transitions and Critical Phenomena, edited by Domb, C. and Lebowitz, J.L., Vol. 12 (Academic Press, New York, 1988) p. 355.Google Scholar
10. Argoul, F., Ameodo, A., Grasseau, G. and Swinney, H.L., Phys. Rev. Lett. 61, 2558 (1988); 63, 1323 (1989).Google Scholar
11. Li, G., Sander, L.M. and Meakin, P., Phys. Rev. Lett. 63, 1322 (1989).Google Scholar
12. Vicsek, T., Family, F. and Meakin, P., Europhys. Lett. 12, 217 (1990).Google Scholar
13. Stanley, H.E., Bunde, A., Havlin, S., Lee, J., Roman, E. and Schwarzer, S., Physica A 168, 23 (1990).Google Scholar
14. Brady, R.M. and Ball, R.C., Nature 309, 225 (1984).Google Scholar
15. Matsushita, M., Sano, M., Hayakawa, Y., Honjo, H. and Sawada, Y., Phys. Rev. Lett. 53, 286 (1984).Google Scholar
16. Grier, D.G., Jacob, E. Ben, Clarke, R. and Sander, L.M., Phys. Rev. Lett. 56, 1264 (1986).Google Scholar
17. Sawada, Y., Dougherty, A and Gollub, J.P., Phys. Rev. Lett. 56, 1260 (1986).Google Scholar
18. Kahanda, G.L.M.K.S. and Tomkiewicz, M., Phys. Rev. B 38, 957 (1988).Google Scholar
19. Hibbert, D.B. and Melrose, J.R., Phys. Rev. A 38, 1036 (1988).Google Scholar
20. Paranjpe, A.S., Bhakay-Tamhane, S. and Vasan, M.B., Phys. Lett. A 140, 193 (1989).Google Scholar
21. Mogi, I., Okubo, S. and Nakagawa, Y., J. Phys. Soc. Jap. 60, 3200 (1991).Google Scholar
22. Trigueros, P.P., Claret, J., Mas, F. and Sagues, F., J. Electroanal. Chem. 328, 165 (1992).Google Scholar
23. Kuhn, A. and Argoul, F., J. Electroanal. Chem. 371, 93 (1994).Google Scholar
24. Argoul, F., Arneodo, A., Elezgaray, J., Grasseau, G. and Murenzi, R., Phys. Lett. A 135, 327 (1989); Phys. Rev. A 41, 5537 (1990).Google Scholar
25. Kuhn, A., Argoul, F., Muzy, J.F. and Arneodo, A., Phys. Rev. Lett. 73 (1994) to appear.Google Scholar
26. Melrose, J.R., Hibbert, D.B. and Ball, R.C., Phys. Rev. Lett. 65, 3009 (1990).Google Scholar
27. Melrose, J.R., Chemometrics and Intelligent Laboratory Systems 15, 231 (1992).Google Scholar
28. Fleury, V., Chazalviel, J.N., Rosso, M. and Sapoval, B., J. Electroanal. Chem. 290, 249 (1990).Google Scholar
29. Fleury, V., Chazalviel, J.N. and Rosso, M., Phys. Rev. Lett. 68, 2492 (1992); Phys. Rev. E 48, 1279 (1993).Google Scholar
30. Rosso, M., Chazalviel, J.N., Fleury, V. and Chassaing, E., Electrochimica Acta 39, 507 (1994).Google Scholar
31. Kuhn, A. and Argoul, F., Fractals 1, 451 (1993); Phys. Rev. E 49, 4298 (1994).Google Scholar
32. Argoul, F. and Kuhn, A., J. Electroanal. Chem. 359, 81 (1993).Google Scholar
33. Argoul, F. and Kuhn, A., Physica A 213 (1994) to appear.Google Scholar
34. Huth, J., Cormick, W.B. Mc, Swinney, H.L., Argoul, F. and Kuhn, A., Phys. Rev. E (1994) submitted.Google Scholar
35. Hecker, N., Grier, D.G. and Sander, L.M., in Fractals Aspects of Materials, edited by Laibowitz, R.B., Mandelbrot, B.B. and Passoja, D.E. (Mat. Res. Soc. Proc., University Park, PA, 1985).Google Scholar
36. Tabard, M., Thesis, University of Bordeaux (1993).Google Scholar
37. Arneodo, A., Argoul, F., Bacry, E., Muzy, J.F. and Tabard, M., Phys. Rev. Lett. 68, 3456 (1992); in [7], p. 191.Google Scholar
38. Arneodo, A., Argoul, F., Muzy, J.F. and Tabard, M., Phys. Lett. A 171, 31 (1992); Physica A 188, 217 (1992).Google Scholar
39. Arneodo, A., Argoul, F., Bacry, E., Elezgaray, J., Muzy, J.F. and Tabard, M., in Progress in Wavelet Analysis and Applications, edited by Meyer, Y. and Roques, S. (Editions Frontiéres, Gif sur Yvette, 1993) p. 21.Google Scholar
40. Muzy, J.F., Bacry, E. and Arneodo, A., Int. J. of Bifurcation and Chaos 4, 245 (1994).Google Scholar
41. Arneodo, A., Bacry, E. and Muzy, J.F., Physica A 213 (1994) to appear.Google Scholar
42. Ossadnik, P., Phys. Rev. A 45, 1058 (1992).Google Scholar
43. Arneodo, A., Bacry, E. and Muzy, J.F., Europhys. Lett. 25, 479 (1994).Google Scholar
44. Arneodo, A., Argoul, F., Muzy, J.F., Tabard, M. and Bacry, E., Fractals 1, 629 (1993); J. Diff. Eq. and Appl. (1994) to appear.Google Scholar