Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-29T07:34:25.894Z Has data issue: false hasContentIssue false

Waste Loading of Actinide Chloride Surrogates in an Iron Phosphate Glass

Published online by Cambridge University Press:  01 February 2011

James M. Schofield
Affiliation:
Immobilization Science Laboratory, Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK.
Paul A. Bingham
Affiliation:
Immobilization Science Laboratory, Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK.
Russell J. Hand
Affiliation:
Immobilization Science Laboratory, Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield, S1 3JD, UK.
Get access

Abstract

Pyrochemical and aqueous processing of impure Pu metal and Pu oxide results in a waste stream that contains calcium, plutonium and americium chlorides (CaCl2, PuCl3 and AmCll3) that tend to form insoluble salt layers on top of melts during vitrification. By adding chlorides to ammonium dihydrogen phosphate, ammonium chloride is evolved during vitrification, leaving behind the Ca, Pu and Am cations as oxides. HfO2 and Sm2O3 were used as surrogates for PuO2 and Am2O3 respectively. The effects of waste loading and melt duration on some basic physical properties for different melt durations were investigated. Synthetic batches containing CaO, HfO2 and Sm2O3 in molar ratios 93.34 : 5.91 : 0.74 respectively, reflecting the waste composition, were mixed with a fixed glass composition of P2O5 (75 mol%) and Fe2O3 (25 mol%). NH4H2PO4 was used as a precursor material. The solubility of calcium, hafnium and samarium oxides into phosphate glasses is reported and elemental analysis of the glasses is compared with expected glass compositions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Donald, I.W., Metcalfe, B.L., Fong, S.K., Gerrard, L. A., Strachan, D. M. and Scheel, R.D., J. Nucl. Mater. 361, 7693 (2007).Google Scholar
2 Xiaomei, L. Burns, R. C. and Lawrance, G. A., Water, Air, & Soil Pollut. 165, 131152 (2005).Google Scholar
3 Li, H. Darab, J. G., Smith, P. A., Schweiger, M. J., Smith, D. E. and Hrma, P. R., Proc. 36th Ann. Meeting of the Inst. of Nucl. Mater. Manage. 466471 (1995).Google Scholar
4 Bingham, P. A., Hand, R.J., Stennett, M.C., Hyatt, N.C. and Harrison, M.T., This volume.Google Scholar
5 Donze, S. L. Montagne and Palavit, G. Chem. Mater. 12, 19211925 (2000).Google Scholar
6 Mesko, M. G. and Day, D. E., J. Nucl. Mater. 273, 2736 (1999).Google Scholar
7 Metcalfe, B. L., Fong, S. K. and Donald, I. W., Glass Technol. 46, 130133 (2005).Google Scholar
8 Yu, X. Day, D. E., Long, G. J. and Brow, R. K., J. Non-Cryst. Solids 215, 2131 (1997).Google Scholar
9 Ray, C. S., Fang, X. Karabulut, M. Marasinghe, G. K. and Day, D. E., J. Non-Cryst. Solids 249, 116 (1999).Google Scholar
10 Fang, X. Ray, C. S., Mogus-Milankovic, A. and Day, D. E., J. Non-Cryst. Solids 283, 162172 (2001).Google Scholar
11 Griscom, D. L., Merzbacher, C. I., Bibler, N. E., Imagawa, H. Uchiyama, S. Namiki, A. Marasinghe, G. K., Mesko, M. and Karabulut, M. Nucl. Instrum. Methods Phys. Res., Sect. B 141, 600–615 (1998).Google Scholar
12 Karabulut, M. Marasinghe, G. K., Ray, C. S., Day, D.E., Wadhill, G. D., Booth, C. H., Allen, P. G., Bucher, J. J., Caulder, D. L. and Shuh, D. K., J. Non-Cryst. Solids 306, 182–192 (2002).Google Scholar
13 Karabulut, M. Metwalli, E. Day, D. E. and Brow, R. K., J. Non-Cryst. Solids 328, 199–206 (2003).Google Scholar
14 Marasinghe, G. K., Karabulut, M. Ray, C. S., Day, D. E., Shumsky, M. G., Yelon, W. B., Booth, C. H., Allen, P. G. and Shuh, D. K., J. Non-Cryst. Solids 222, 144–152 (1997).Google Scholar
15 Mesko, M. G., Day, D.E. and Bunker, B.C.. Waste Manage. 20, 271278 (2000).Google Scholar
16 Donald, I. W., Metcalfe, B. L., Fong, S. K. and Gerrard, L. A., J. Non-Cryst. Solids 352, 29933001 (2006).Google Scholar
17 Lopez, C. Deschanels, X. Bart, J. M., Boubals, J. M., Auwer, C. Den and Simoni, E. J. Nucl. Mater. 312, 7680 (2003).Google Scholar
18 Brow, R. K., Click, C. A. and Alam, T. M., J. Non-Cryst. Solids 274, 916 (2000).Google Scholar