Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-19T05:23:08.167Z Has data issue: false hasContentIssue false

Wafer-Scale Laser Lithography: I. Pyrolytic Deposition Of Metal Microstructures*

Published online by Cambridge University Press:  15 February 2011

Irving P. Herman
Affiliation:
Physics Department, Lawrence Livermore National Laboratory, P.O. Box 808-L-278, Livermore, CA 94550
Roderick A. Hyde
Affiliation:
Physics Department, Lawrence Livermore National Laboratory, P.O. Box 808-L-278, Livermore, CA 94550
Bruce M. Mcwilliams
Affiliation:
Physics Department, Lawrence Livermore National Laboratory, P.O. Box 808-L-278, Livermore, CA 94550
Andrew H. Weisberg
Affiliation:
Physics Department, Lawrence Livermore National Laboratory, P.O. Box 808-L-278, Livermore, CA 94550
Lowell L. Wood.
Affiliation:
Physics Department, Lawrence Livermore National Laboratory, P.O. Box 808-L-278, Livermore, CA 94550
Get access

Abstract

Mechanisms for laser-driven pyrolytic deposition of micron-scale metal structures on crystalline silicon have been studied. Models have been developed to predict temporal and spatial properties of laser-induced pyrolytic deposition processes. An argon ion laser-based apparatus has been used to deposit metal by pyrolytic decomposition of metal alkyl and carbonyl compounds, in order to evaluate the models. These results of these studies are discussed, along with their implications for the high-speed creation of micron-scale metal structures in ULSI systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1983

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

Work performed under the auspices of the U.S.Department of Energy by the Lawrence Livermore National Laboratory under contract number W-7405-ENG-48.

References

REFERENCES

[R1] Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., IEEE J. Quant. Electron. QE–16, 1233 (1980).CrossRefGoogle Scholar
[R2] Ehrlich, D. J., Osgood, R. M. Jr. and Deutsch, T. F., J. Electrochem. Soc. 128, 2030 (1981).CrossRefGoogle Scholar
[R3] Solanki, R., Boyer, P. K., Mahan, J. E. and Collins, G. J., Appl. Phys. Lett. 38, 572 (1981).CrossRefGoogle Scholar
[R4] Rytz-Froidevaux, Y., Salathe, R. P. and Gilgen, H. H., Phys. Lett. 84A, 216 (1981).CrossRefGoogle Scholar
[R5] Allen, S. D., J. Appl. Phys. 52, 6501 (1981).CrossRefGoogle Scholar
[R6] Berg, R. S. and Mattox, D. M., “Proceedings of the Fourth International Conference on Chemical Vapor Deposition”, edited by Glaski, F. A. (Am. Nucl. Soc., Hindsdale,Illinois, 1973), p. 196.Google Scholar
[R7] Carlton, H. E. and Oxley, J. H., A.I.C.L.E. Journal 12, 86 (1967).CrossRefGoogle Scholar
[R8] Goldberger, W. M. and Othmer, D. F., IECPDE 2, 202 (1963).Google Scholar
[R9] Moody, J. E. and Hendel, R. H., J. Appl. Phys., 53, 4364 (1982).Google Scholar
[R10] Nissim, Y. I., Lietoila, A., Gold, R. B. and Gibbons, J. F., J. Appl. Phys., 51, 274 (1980).CrossRefGoogle Scholar
[R11] Hirschfelder, J. O., Curtiss, C. F. and Bird, R. B., Molecular Theory of Gases and Liquids (John Wiley and Sons, New York, 1954) p. 14.Google Scholar