Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:58:00.744Z Has data issue: false hasContentIssue false

Wafer Bonded Ge-Si Heterostructure for Avalanche Photodiode Application

Published online by Cambridge University Press:  20 July 2011

Ki Yeol Byun
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland.
John Hayes
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland.
Farzan Gity
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland.
Brian Corbett
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland.
Cindy Colinge
Affiliation:
Tyndall National Institute, University College Cork, Lee Maltings, Prospect Row, Cork, Ireland.
Get access

Abstract

In this study, we investigate directly bonded germanium-silicon interfaces to facilitate the development of high quality germanium silicon integration for Avalanche photodiode application. Angle resolved x-ray photoelectron spectroscopy data is presented which provides the chemical composition of the germanium surfaces as a function of the surface passivation. The hetero-structure is characterized by measuring forward and reverse current and comparing the measured results to TCAD simulation. The physical structure of hetero-junction is supported by high resolution transmission electron microscopy.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jones, R., Park, H., Fang, A., Bowers, J., Cohen, O., Raday, O., and Paniccia, M., J. Mater. Sci: Mater. Electron. 20, S3 (2009).Google Scholar
2. Assefa, S., Xia, F., and Vlasov, Y., Nat. 464, 80 (2010).Google Scholar
3. Kang, Y., Liu, H., Morse, M., Paniccia, M., Zadka, M., Litski, S., Sarid, G., Pauchard, A., Kuo, Y., Chen, H., Zaoui, W., Bowers, J., Beling, A., McIntosh, D., Zheng, X. and Campbell, J., Nat. Photonics 3, 59 (2008).Google Scholar
4. Colace, L., Masini, G., Altieri, A., and Assanto, G., IEEE Photon. Technol. Lett. 18, 1094 (2006).Google Scholar
5. Byun, K., Yu, R., Saeidi, N., Flynn, M., Ferain, I., and Colinge, C., ECS Tran. 33(4), 187 (2010).Google Scholar
6. Iwasaki, Y., Nakamura, Y., Kikkawa, J., Sato, M., Toyoda, E., Isogai, H., Izunome, K., and Sakai, A., Jpn. J. Appl. Phys. 50, 04DA14 (2011).Google Scholar
7. Nakayama, K., Tanabe, K., and Atwater, H., J. Appl. Phys. 103, 094503 (2008).Google Scholar
8. Hobart, K., Twigg, M., Kub, F., and Desmond, C., Appl. Phys. Lett. 72, 1095 (1998).Google Scholar
9. Oh, J., and Campbell, J., J. Elec. Mat. 33, 364 (2004).Google Scholar
10. Sun, S., Sun, Y., Liu, Z., Lee, D., Peterson, S., and Pianetta, P., Appl. Phys. Lett. 88, 021903 (2006).Google Scholar
11. Bengtsson, S., and Engstrom, O., J. Appl. Phys. 66, 1231 (1989).Google Scholar
12. Byun, K., Ferain, I., Hayes, J., Yu, R., Gity, F., and Colinge, C., Microelec. Eng. 88, 522 (2011).Google Scholar