Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T18:02:25.163Z Has data issue: false hasContentIssue false

Voltammetric Studies of Poly(carbon disulfide)

Published online by Cambridge University Press:  25 February 2011

L. Geng
Affiliation:
Moltech Corporation, 25 East Loop Road, Stony Brook, New York, 11790-3350
H.S. Lee
Affiliation:
Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973
J. Xu
Affiliation:
Moltech Corporation, 25 East Loop Road, Stony Brook, New York, 11790-3350
J. McBreen
Affiliation:
Department of Applied Science, Brookhaven National Laboratory, Upton, New York 11973
Sathya Prasad
Affiliation:
Moltech Corporation, 25 East Loop Road, Stony Brook, New York, 11790-3350
T.A. Skotheim
Affiliation:
Moltech Corporation, 25 East Loop Road, Stony Brook, New York, 11790-3350
Get access

Abstract

Poly(carbon disulfide) was studied by cyclic voltammetry using glassy carbon and platinum macro- and microdisk electrodes. The electron transfer kinetic is significantly faster at glassy carbon electrodes than at Pt electrodes. It is chemically reversible with moderate electron transfer rates. Voltammetric results of poly(carbon disulfide) are in good agreement with our battery testing data. The k0 value measured at a Pt microdisk electrode is 7×10−3 cm/sec. Electrochemical data suggest that PCS can be a potential cathode material for low current density lithium batteries.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Visco, S. J., Mailhe, C. C., Jonghe, L. C. De, and Armand, M., J. Electrochem. Soc., 136, 661(1989).Google Scholar
2. Liu, M., Visco, S.J., and Jonghe, L.C. De, J. Electrochem. Soc., 137, 750(1990).Google Scholar
3. Prasad, S., Lee, H.S., McBreen, J. and Skotheim, T.A., Extended Abstract, 182 Electrochemical Society Meeting, p63, Toronto, Canada, 1992.Google Scholar
4. Bridgman, P.W., Proc. Am. Acad. Arts Sci. 74, 399(1941).Google Scholar
5. Whalley, E., Can. J. Chem., 38, 2105(1960).Google Scholar
6. Tsukamoto, J. and Takahashi, A., Jap. J. Appl. Phys., 25, L338(1986).Google Scholar
7. Wawzonek, S. and Heilmann, S. M., J. Org. Chem. 39, 511(1974).Google Scholar
8. Hurley, M. F. and Chambers, J. Q., J. Org. Chem., 46, 778(1981).Google Scholar
9. Jeroschewski, P., Pragst, F., J. Electroanal. Chem., 149, 131(1983).Google Scholar
10. Wawzonek, S., Chang, H-F., Everett, W., and Ryan, M., J. Electrochem. Soc., 130, 803(1983).Google Scholar
11. Hunt, M.R., Winter, G., Austalia J. Chem., 25, 417(1972).Google Scholar
12. Jeroschewski, P., Pragst, F., J. Electroanal. Chem., 149, 131(1983).Google Scholar
13. Bontempelli, G., Magno, F., Mazzocchin, Gian-Antonio, and Seeber, Renato, J. Electroanal. Chem., 63, 231(1975).Google Scholar
14. Mirkin, M. V. and Bard, A. J., Anal. Chem., 64, 2293(1992).Google Scholar