Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-20T01:33:17.131Z Has data issue: false hasContentIssue false

VLS Growth of Si nanowhiskers on a H-terminated Si{111} surface

Published online by Cambridge University Press:  09 August 2011

N. Ozaki
Affiliation:
Department of Physics, Graduate School of Science, Osaka University 1–16 Machikane-yama, Toyonaka, Osaka 560–0043, Japan
Y. Ohno
Affiliation:
Department of Physics, Graduate School of Science, Osaka University 1–16 Machikane-yama, Toyonaka, Osaka 560–0043, Japan
S. Takeda
Affiliation:
Department of Physics, Graduate School of Science, Osaka University 1–16 Machikane-yama, Toyonaka, Osaka 560–0043, Japan
M. Hirata
Affiliation:
Department of Physics, Graduate School of Science, Osaka University 1–16 Machikane-yama, Toyonaka, Osaka 560–0043, Japan
Get access

Abstract

We have grown Si nanowhiskers on a Si{1111} surface via the vapor-liquid-solid (VLS) mechanism. The minimum diameter of the crystalline is 3nm and is close to the critical value for the effect of quantum confinement. We have found that many whiskers grow epitaxially or non-epitaxially on the substrate along the 〈112〉 direction as well as the 〈111〉 direction.

In our growth procedure, we first deposited gold on a H-terminated Si{111} surface and prepared the molten catalysts of Au and Si at 500°C. Under the flow of high pressure silane gas, we have succeeded in producing the nanowhiskers without any extended defects. We present the details of the growth condition and discuss the growth mechanism of the nanowhiskers extending along the 〈112〉 direction.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Liu, H. I., Maluf, N. I., Pease, R. F. W., Biegelsen, D. K., Johnson, N. M., and Ponce, F. A., J. Vac. Sci. Technol. B 10, 2846 (1992).Google Scholar
2 Liu, H. I., Biegelsen, D. K., Ponce, F. A., Johnson, N. M., and Pease, R. F. W., Appl. Phys. Lett. 64, 1383 (1994).Google Scholar
3 Wada, Y., Kure, T., Yoshimura, T., Sudo, Y., Kobayashi, T., Goto, Y., and Kondo, S., Jpn. J. Appl. Phys. 33, 905 (1994).Google Scholar
4 Westwater, J., Gosain, D. P., Tomiya, S., Usui, S., and Ruda, H., J. Vac. Sci. Technol. B 15, 554 (1997).Google Scholar
5 Westwater, J., Gosain, D. P., and Usui, S., Jpn. J. Appl. Phys. 36, 6204 (1997).Google Scholar
6 Morales, A. M. and Lieber, C. M., Science 279, 208 (1998).Google Scholar
7 Zhang, Y. F., Tang, Y. H., Wang, N., Yu, D. P., Lee, C. S., Bello, I., and Lee, S. T., Appl. Phys. Lett. 72, 1835 (1998).Google Scholar
8 Yu, D. P., Lee, C. S., Bello, I., Sun, X. S., Tang, Y. H., Zhou, G. W., Bai, Z. G., Zhang, Z., and Feng, S. Q., Solid State Commun. 105, 403 (1998).Google Scholar
9 Wagner, R. S. and Ellis, W.C., Appl.Phys.Lett. 4, 89 (1964).Google Scholar
10 Wagner, R. S., in Whisker Technology, Levitt, A. P., Ed. (Willey-Interscience, N.Y., 1970) pp. 47119. Google Scholar
11 Eaglesham, D. J., White, A. E., Feldman, L. C., Moriya, N., Jacobson, D. C., Phys. Rev. Lett. 70, 1643 (1993).Google Scholar
12 Iwami, M., Nishikuni, M., Okuno, K. and Hiraki, A., Solid State Comm. 51, 561 (1984).Google Scholar
13 Golan, Y., Margulis, L., Matlis, S., and Rubinstein, I., J. Electrochem Soc. 142, 1629 (1995).Google Scholar
14 Sui, Z., Leong, P. P., Herman, I. P., Higashi, G. S., and Temkin, H., Appl. Phys. Lett. 60, 2086 (1992).Google Scholar