Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T02:33:58.442Z Has data issue: false hasContentIssue false

Visible Photonic Band Gap Waveguide Devices

Published online by Cambridge University Press:  10 February 2011

M. D. B. Charlton
Affiliation:
Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
G. J. Parker
Affiliation:
Department of Electronics and Computer Science, University of Southampton, Highfield, Southampton, SO17 1BJ, UK
Get access

Abstract

Photonic band gap (PBG) structures are multidimensional lattices, formed by a strong modulation of dielectric constant which prevent the propagation of photons over a forbidden energy range1. Since the first demonstration of a PBG at microwave frequencies2-7, it has proved technologically difficult to create a PBG in the optical region of the spectrum8-11 since the band gap centre wavelength is of the order of twice the lattice pitch. Recently, we have succeeded in fabricating novel waveguide designs which incorporate a TE polarised visible photonic band gap12,13 By reducing the band gap to visible wavelengths, we greatly simplify the experimental investigation of the behaviour of these complicated structures.

In this paper, we present the fabrication and initial optical testing of devices with band gaps in the visible wavelength range 545nm-632.8nm. These devices demonstrate unusual optical effects dependent upon the number of lattice periods such as: broadband wavelength filtering, wavelength dependent beam splitting, and broadband polarisation selective routing. In contrast to the well known active applications of PBGs, we suggest a host of new passive applications for PBGs in optical computing and wavelength division multiplexed (WDM) communications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yablonovitch, E., Phys. Rev. Lett. 58, 2059 (1987)Google Scholar
2 Yablonovitch, E. and Leung, K.M., Nature 351, 278 (1991)Google Scholar
3 Yablonovitch, E., J.Opt Soc. Am B 10 283 (1993)Google Scholar
4 Yablonovitch, E., J.Mod Opt 41, 173 (1994)Google Scholar
5 Robertson, W.M. Arjavalingam, G., Meade, R.D., Brommer, K.D., Rappe, A.M. Joannopoulos, J.D., Phys Rev Lett 68, 2023 (1992)Google Scholar
6 Robertson, W.M., Arjavalingam, G., Meade, R.D., Brommer, K.D., Rappe, A.M. Joannopoulos, J.D., J.Opt.Soc.Am B 10,322 (1993)Google Scholar
7 Lin, S.Y., Arjavalingam, G. and Robertson, W.M., J.Mod Opt 41, 385 (1994)Google Scholar
8 Lau, H.W., Parker, G.J., Greef, R., Holling, M., App. Phys. Letts, 67 (1995)Google Scholar
9 Charlton, M.D.B., Parker, G.J., J.Micromech & Microeng 7, 155 (1997)Google Scholar
10 Gruning, U. and Lehmann, V., App. Phys. Letts, 66, 3254 (1995)Google Scholar
11 Gruning, U., Lehmann, V., Ottow, S., Busch, K., App. Phys. Letts, 68, 747 (1995)Google Scholar
12 Charlton, M.D.B., Roberts, S.W., Parker, G.J., Mat. sci. & eng. B, 49, 155 (1997)Google Scholar
13 Charlton, M.D.B., Parker, G.J., Accepted: J.Micromech & Microeng, (1997)Google Scholar
14 Plihal, M., Shambrook, A., Maradudin, A.A. and Sheng, P., Opt. Com. 80, 199 (1991)Google Scholar
15 Plihal, M. and Maradudin, A.A., Phys Rev B 44, 8565 (1991)Google Scholar
16 Padjen, R., Gerard, J.M. and Marzin, J.Y., J. Mod. Opt 41, 295 (1994)Google Scholar
17 Winn, J.N., Meade, R.D., Joannopoulos, J.D., J.Mod.Opt, 41, 257 (1994)Google Scholar
18 Krauss, T.F., De La Rue, R.M., brand, S., Nature, 384, 699, (1996,)Google Scholar
19 Yablonovitch, E., J.Phys Condens Matter 5, 2443 (1993)Google Scholar
20 Maradudin, A.A., Mc Gum, A.R.,J.Mod. Opt, 41, 275, (1994)Google Scholar
21 Kuzmiak, V., Maradudin, A.A., Pincemin, F., Phys. Rev. B. 50, 16835 (1994)Google Scholar
22 Atkin, D.M., Russel, P. St.J., Birks, T.A., J. Mod. Opt, 43, 1035, (1996)Google Scholar
23 Russell, p. St.J., Physics world, August, 37 (1992)Google Scholar
24 Spielmann, C., Szipöcs, R., Sting, A. and Krausz, F., Phys. Rev. Lett 73, 2308 (1994)Google Scholar
25 McCall, S.L., Platzman, P.M., Dalichaouch, R., Smith, D. Schultz, S., Phys Rev. Lett 67, 2017,(1991)Google Scholar
26 Smith, D.R., Dalichaouch, R., Kroll, N., Schultz, S., McCall, S.L., Platzman, P.M., J.Opt Soc Am B 10, 314 (1993)Google Scholar
27 Dalichaouch, R., Armstrong, J.P., Schultz, S., Platzman, P.M., McCall, S.L., Nature 354, 53 (1991)Google Scholar
28 Yablonovitch, E., Gmitter, T.J., Meade, R.D., Rappe, A.M., Brommer, K.D. Joannopoulos, J.D., Phys Rev Lett 67, 3380 (1991)Google Scholar
29 Yablonovitch, E., Gmitter, T.J., Leung, K.M., Meade, R.D., Rappe, A.M., Brommer, K.D., Joannopoulos, J.D., Opt. Quantum Electron.. 24, S273 (1992)Google Scholar