Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-27T17:59:28.828Z Has data issue: false hasContentIssue false

Visible Emission from Thin-Film Phosphors of Amorphous AlN:Cu, Mn, and Cr

Published online by Cambridge University Press:  17 March 2011

M. L. Caldwell
Affiliation:
Condensed Matter and Surface Science Program Ohio University Athens, OH 45701
A. L. Martin
Affiliation:
Condensed Matter and Surface Science Program Ohio University Athens, OH 45701
C. M. Spalding
Affiliation:
Condensed Matter and Surface Science Program Ohio University Athens, OH 45701
P. G. Van Patten
Affiliation:
Condensed Matter and Surface Science Program Ohio University Athens, OH 45701
M. E. Kordesch
Affiliation:
Condensed Matter and Surface Science Program Ohio University Athens, OH 45701
H. H. Richardson
Affiliation:
Condensed Matter and Surface Science Program Ohio University Athens, OH 45701
Get access

Abstract

Luminescence studies of amorphous AlN doped with Cu, Mn, or Cr were performed at 300 K. Thin films of Cu, Mn, and Cr doped amorphous AlN, ∼200 nm thick, were grown on p-doped silicon (111) substrates using RF magnetron sputtering in a nitrogen atmosphere. Cathodoluminescence (CL) showed that pure Cu doped amorphous AlN has strong emission in the blue (∼420 nm) and Mn and Cr doped films luminesce in the red (∼690 nm). Cr+3 emission is more intense than Mn+4 because chromium does not suffer from incomplete charge compensation in the III-V semiconductor. Luminescence studies of crystalline and amorphous AlN:Mn thin films showed a red shift in the emission peak by almost 100 nm and is believed to be caused by the different crystal field of the amorphous host compared to the crystalline host material. Secondary ion mass spectrometry (SIMS) depth profiling was conducted to confirm the presence of the Cu and Cr in the films and to show the amount of dopant in relation to the Si substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wang, X. D., Hipps, K. W., Mazure, U., J. Phys. Chem. 96, 8485 (1992).Google Scholar
2. Mazur, U., Cleary, A. C., J. Phys. Chem. 94, 189 (1990).Google Scholar
3. Jain, S. C., Willander, M., Narayan, J., Overstraeten, R. Van, J. Appl. Phys. 87, 3, 965 (2000).Google Scholar
4. Tsvetdov, D. V., Zubrilov, A. S., Nidolaev, V. I., Soloviev, V. A., Dmitriev, V. A., MRS Internet J. Nitride Semicond. Res. 1, 35 (1996).Google Scholar
5. Steckl, A. J., Birkhahn, R., Appl. Phys. Lett. 73, 1700 (1998).Google Scholar
6. Caldwell, M. L., Martin, A. L., Dimitrova, V. I., Spalding, C. M., VanPatten, P. G., Kordesch, M. E., Richardson, H. H., submitted to Journal of Vacuum Science and Technology (2000).Google Scholar
7. Kim, S., Rhee, S. J., Tumbull, D. A., Li, X., Coleman, J. J., Bishop, S. G., Klein, B., Appl. Phys. Lett. 71, 2662 (1997).Google Scholar
8. Lozykowski, H. J., Jadwisienczak, W. M. and Brown, I., Appl. Phys. Lett. 74, 1129 (1999).Google Scholar
9. Birkhahn, R., Garter, M. and Steckl, A. J., Appl. Phys. Lett. 74, 2161 (1999).Google Scholar
10. Lozykowski, H. J., Jadwisienczak, W. M. and Brown, I., Appl. Phys. Lett. 76, 861 (2000).Google Scholar
11. Caldwell, M. L., Richardson, H. H. and Kordesch, M. E., MRS Internet Journal Nitride Semiconductor Research, 5S1, W3.26 pp. 17 (1999).Google Scholar
12. Tucceri, R. C., Bland, C. D., Caldwell, M. L., Ervin, M. H., Magtoto, N. P., Spalding, C. M., Wood, M. A. and Richardson, H. H., Material Research Symposium Proceedings, 572, 413418 (1999).Google Scholar
13. Powell, R. C., Physics of Solid-State Laser Materials, (Springer-Verlag, New York, 1998).Google Scholar
14. Powell, R. C. and DiBartolo, B., Phys. Status Solidi, 10, 315357 (1972).Google Scholar