Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-06T04:29:50.293Z Has data issue: false hasContentIssue false

Viscosity, Relaxation and Crystallization Kinetics In Zr-Ti-Cu-Ni-Be Strong Bulk Metallic Glass Forming Liquids

Published online by Cambridge University Press:  10 February 2011

Ralf Busch
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
Andreas Masuhr
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
Eric Bakke
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
T. Andy Waniuk
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
William L. Johnson
Affiliation:
Keck Laboratory of Engineering Materials, California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

The high thermal stability of bulk metallic glass (BMG) forming liquids in the undercooled state allows for measurements of thermophysical properties in a large time and temperature window. In this contribution, results on viscous flow, relaxation and crystallization of Zr-Ti-Cu- Ni-Be BMG forming alloys are presented. The data are compared with the kinetics of other metallic and non-metallic liquids. BMG formers are relatively strong liquids with melt viscosities that are about three orders of magnitude larger than in pure metals and other alloys. The strong liquid behavior of these alloys is also reflected by a small entropy of fusion and a weak temperature dependence of the thermodynamic functions upon undercooling. The high viscosity and small driving force for crystallization are major contributing factors to the high glass forming ability and low critical cooling rate. The upper portions of experimental timetemperature- transformation diagrams down to the crystallization nose can be described well using the kinetics deduced from the viscosity data. For lower temperature the viscosity can not describe the crystallization kinetics. The time scale for structural relaxation becomes larger than for diffusive hopping processes. Diffusion stays relatively fast, whereas viscosity and structural relaxation time upon undercooling follow a Vogel-Fulcher-Tammann relation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Chen, H.S. and Turnbull, D., J. Chem Phys. 48, 2560 (1968).Google Scholar
2. Tsao, S.S. and Spaepen, F., Acta Metall. 33, 1355 (1985).Google Scholar
3. Chen, H.S., J. Non-Crystalline Solids 27, 257 (1978).Google Scholar
4. Volkert, C.A. and Spaepen, F., Acta Metall. 37, 1355 (1989).Google Scholar
5. Inoue, A., Zhang, T. and Masumoto, T., Mater. Trans. JIM 31, 425 (1991).Google Scholar
6. Zhang, T., Inoue, A. and Masumoto, T., Mater. Trans. JIM 32, 1005 (1991).Google Scholar
7. Peker, A. and Johnson, W. L., Appl. Phys. Lett. 63, 2342 (1993).Google Scholar
8. Kim, Y.J., Busch, R., Johnson, W.L., Rulison, A.J., Rhim, W. K., Appl. Phys Lett. 65, 2136 (1994).Google Scholar
9. Busch, R., Kim, Y.J., and Johnson, W.L, J. Appl. Phys. 77, 4039 (1995).Google Scholar
10. Geyer, U., Schneider, S., Johnson, W.L., Qiu, Y., Tombrello, T. A., and Macht, M. P., Phys. Rev. Lett. 75, 2364 (1995).Google Scholar
11. Busch, R., Kim, Y.J., Johnson, W.L., Rulison, A.J., Rhim, W. K., and Isheim, D., Appl. Phys Lett. 66, 3111 (1995).Google Scholar
12. Stephan, M.J., Akad. Wiss. Wien. Math.-Natur Klasse Abt. 2. 69, 713 (1984).Google Scholar
13. Diennes, G.J. and Klemm, H.F., J. Appl. Phys. 17,458 (1946).Google Scholar
14. Bakke, E., Busch, R., and Johnson, W.L., Appl. Phys. Lett. 67, 3260 (1995).Google Scholar
15. Busch, R., Bakke, E., and Johnson, W.L., Acta Mater. 46, 4725 (1998).Google Scholar
16. Bakke, E., Busch, R., and Johnson, W.L., Mat. Sci. Forum 225–227, 95 (1996).Google Scholar
17. Hagy, H.E., J. Amer. Ceram. Soc. 46, 93 (1963).Google Scholar
18. Trouton, F.T., Proc. Roy. Soc (London) 77, 426 (1906).Google Scholar
19. Reiner, M., Rheology, Vol.1 (ed Eirich, F. R.), Academic Press, New York, 9 (1956).Google Scholar
20. The cross section moment of inertia for a rectangular beam is (a.h3)/3, with, a, width and, h, height.Google Scholar
21. Kundu, P.K., Fluid Mechanics (Academic Press, San Diego, 1990).Google Scholar
22. Masuhr, A., PhD thesis, California Institute of Technology, 1998.Google Scholar
23. Couette, M.M., Ann. Chim. Phys. 21,433 (1880).Google Scholar
24. Masuhr, A., Busch, R., and Johnson, W.L., Mater. Sci. Forum 269–272, 779 (1998).Google Scholar
25. Phillips, J.C., Rep. Prog. Phys. 59 (1996) 1133.Google Scholar
26. Busch, R., and Johnson, W.L. Appl. Phys. Lett. 72, 2695 (1998).Google Scholar
27. Tuinstra, P., Duine, R.A., Sietsma, J. and van den Beukel, A., Acta metall. Mater. 43, 2815 (1995).Google Scholar
28. Kim, Y.J., Busch, R., Johnson, W.L., Rulison, A.J., and Rhim, W. K., Appl. Phys Lett. 68, 1057 (1996).Google Scholar
29. Masuhr, A., Waniuk, T.A., Busch, R. and Johnson, W.L., Phys. Rev. Letters (submitted).Google Scholar
30. Angell, C.A., Science 267, 1924 (1995).Google Scholar
31. Glasstone, S., Laidler, K.J. and Eyring, H., The Theory of Rate Processes (McGraw-Hill, New York, 1941).Google Scholar
32. Grest, G.S. and Cohen, M.H., Adv. Chem. Phys. 48, 455 (1981).Google Scholar
33. Masuhr, A., Busch, R. and Johnson, W.L., J. Non Cryst. Solids (in press).Google Scholar
34. Waniuk, T.A. and Busch, R., unpublished.Google Scholar
35. Wenwer, F., Knorr, K., Macht, M.P. and Mehrer, H., Defect and Diffusion Forum 143–147, 831 (1997).Google Scholar
36. Budke, E., Fielitz, P., Macht, M.P., Naundorf, V. and Frohberg, G., Defect and Diffusion Forum 143–147, 825 (1997).Google Scholar
37. Masuhr, A. and Geyer, U., unpublished.Google Scholar
38. Ehmler, H., Heesemann, A., Rätzke, K., Faupel, F. and Geyer, U., Phys. Rev. Lett. 80, 4919 (1998).Google Scholar
39. Meyer, A., Wuttke, J., Petry, W., Randl, O.G. and Schober, H., Phys. Rev. Lett. 80, 4454 (1998).Google Scholar
40. Faber, T.E., Introduction to the Theory of Liquid Metals (Cambridge University Press, 1972).Google Scholar
41. Uhlmann, D.R., J. Non-Cryst. Solids 7, 337 (1972)Google Scholar