Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-27T01:41:42.375Z Has data issue: false hasContentIssue false

Very Low-Temperature, Gram-Scale Synthesis of Monodisperse BaTiO3 Nanocrystals via an Interfacial Hydrolysis Reaction

Published online by Cambridge University Press:  01 February 2011

Daniel E. Morse
Affiliation:
[email protected], University of California, Santa Barbara, Institute for Collaborative Biotechnologies, Santa Barbara, CA, 93106-9610, United States
Richard L. Brutchey
Affiliation:
[email protected], University of Southern California, Department of Chemistry, 840 Downey Way, Los Angeles, CA, 90089-0744, United States, 213-821-2554, 213-740-0930
Get access

Abstract

A vapor diffusion sol-gel method is reviewed for the preparation of high-quality BaTiO3 nanocrystals on the gram scale at very low temperatures. The synthesis is based on the kinetically controlled introduction of water into a solution of the bimetallic alkoxide, BaTi(O2C4H9)6, where slow hydrolysis then occurs at the vapor-solution interface followed by nucleation and nanocrystal growth at 16 °C. The resulting 6-nm, quasi-spherical nanocrystals are both monodisperse (without stabilizing agents or size selecting purification) and highly crystalline (without any post-synthesis heat treatment), and are isolated in yields near 100%. Based on new permittivity and calorimetry data, the crystal structure of the nanocrystals is most likely in the paraelectric cubic phase (space group Pm3m) at room temperature, which corroborates previous diffraction data. It was also demonstrated that the BaTiO3 nanocrystals can be doped with trivalent lanthanum cations using the same low-temperature vapor diffusion sol-gel method to yield donor-doped Ba1−xLaxTiO3, which exhibits a considerable PTCR effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.a) Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials (Clarendon Press, Oxford, 1977); b) R.E. Newnham and L.E. Cross, MRS Bull. 30, 845 (2005); c) C.D. Chandler, C. Roger, M.J. Hampden-Smith, Chem. Rev. 93, 1205 (1993).Google Scholar
2. Gao, Y. and Koumoto, K., Cryst. Growth & Design 5, 1893 (2005).Google Scholar
3. O'Brien, S., Brus, L., Murray, C.B., J. Am. Chem. Soc. 123, 12085 (2001).Google Scholar
4. Niederberger, M., Pinna, N., Polleux, J., Antoinetti, M., Angew. Chem. Int. Ed. 43, 2270 (2004).Google Scholar
5. Wang, X., Zhuang, J., Peng, Q., Li, Y.D., Nature 437, 121 (2005).Google Scholar
6. Kolen'ko, Y.V., Kovnir, K.A., Neira, I.S., Taniguchi, T., Ishigaki, T., Wanatabe, T., Sakamoto, N., Yoshimura, M., J. Phys. Chem. C 111, 7306 (2007).Google Scholar
7. Brutchey, R.L., Yoo, E.S., Morse, D.E., J. Am. Chem. Soc. 128, 10288 (2006).Google Scholar
8. Nuraje, N., Su, K., Haboosheh, A., Samson, J., Manning, E.P., Yang, N.-l., Matsui, H., Adv. Mater. 18, 807 (2006).Google Scholar
9. Bansal, V., Poddar, P., Ahmad, A., Sastry, M., J. Am. Chem. Soc. 128, 11958 (2006).Google Scholar
10. Ahmad, G., Dickerson, M.B., Cai, Y., Jones, S.E., Ernst, E.M., Vernon, J.P., Haluska, M.S., Fang, Y., Wang, J., Subramanyam, G., Naik, R.R., Sandhage, K.H., J. Am. Chem. Soc. 130, 4 (2008).Google Scholar
11.a) Schwenzer, B., Roth, K.M., Gomm, J.R., Murr, M., Morse, D.E., J. Mater. Chem. 16, 401 (2006); b) D. Kisailus, B. Schwenzer, J. Gomm, J.C. Weaver, D.E. Morse, J. Am. Chem. Soc. 128, 10276 (2006); c) J.R. Gomm, B. Schwenzer, D.E. Morse, Solid State Sci. 9, 429 (2007).Google Scholar
12. Brutchey, R.L. and Morse, D.E., Angew. Chem. Int. Ed. 45, 6564 (2006).Google Scholar
13.a) Mao, Y., Banerjee, S., Wong, S.S., Chem. Commun. 408 (2003); b) C. Liu, B. Zou, A.J. Rondinone, Z.J. Zhang, J. Am. Chem. Soc. 123, 4344 (2001).Google Scholar
14. Caulton, K.G. and Hubert-Pfalzgraf, L.G., Chem. Rev. 90, 969 (1990).Google Scholar
15. Hubert-Pfalzgraf, L.G., Daniele, S., Decams, J.M., J. Sol-Gel Sci. Tech. 8, 49 (1997).Google Scholar
16. Spaldin, N.A., Science 304, 1606 (2004).Google Scholar
17. Spanier, J.E., Kolpak, A.M., Urban, J.J., Grinberg, I., Ouyang, L., Yun, W.S., Rappe, A.M., Park, H., Nano Lett. 6, 735 (2006).Google Scholar
18. Zhang, Q., Cagin, T., Goddard, W.A., Proc. Natl. Acad. Sci. U.S.A. 103, 14695 (2006).Google Scholar
19. Peng, C.-J., Lu, H.-Y., J. Am. Ceram. Soc. 71, 44 (1988).Google Scholar
20. Brutchey, R.L., Cheng, G., Gu, Q., Morse, D.E., Adv. Mater. 20, 1029 (2008).Google Scholar