Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T01:46:46.978Z Has data issue: false hasContentIssue false

Versatile Core-Sheath Biofibers using Coaxial Electrospinning

Published online by Cambridge University Press:  01 February 2011

Daewoo Han
Affiliation:
[email protected], University of Cincinnati, Electrical and Computer Engineering, 910 Rhodes Hall, ML30, Cincinnati, OH, 45246, United States, 513-556-1549, 513-556-7326
Steven T. Boyce
Affiliation:
[email protected], University of Cincinnati, Department of Surgery, Cincinnati, OH, 45267, United States
Andrew J. Steckl
Affiliation:
[email protected], University of Cincinnati, Department of Electrical and Computer Engineering, Cincinnati, OH, 45221, United States
Get access

Abstract

We have investigated coaxial electrospinning to produce core-sheath fibers for tissue engineering. We have successfully produced core-sheath structured fibers of poly(ε-caprolactone) (PCL) and gelatin using the coaxial electrospinning technique. The core-sheath scaffold exhibits better mechanical properties compared to gelatin scaffold. We have characterized the resulting core and core-sheath fiber diameters and the scaffold porosity, etc.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Fang, X. and Reneker, D. H., Journal of Macromolecular Science, Part B 36 (2), 169 (1997).Google Scholar
2 Zhang, Y., Ouyang, H., Lim, C. T., Ramakrishna, S. and Huang, Z. M., Journal of Biomedical Materials Research 72B (1), 156 (2005).Google Scholar
3 Reneker, D. H. and Chun, I., Nanotechnology 7 (3), 216 (1996).Google Scholar
4 Fong, H., Liu, W., Wang, C. S. and Vaia, R. A., Polymer 43 (3), 775 (2002).Google Scholar
5 Pinto, N. J. Jr, Johnson, A. T., MacDiarmid, A. G., Mueller, C. H., Theofylaktos, N., Robinson, D. C. and Miranda, F. A., Applied Physics Letters 83 (20), 4244 (2003).Google Scholar
6 Sun, Z., Zussman, E., Yarin, A. L., Wendorff, J. H. and Greiner, A., Advanced Materials 15 (22), 1929 (2003).Google Scholar
7 Li, D. and Xia, Y., Nano Letters 4 (5), 933 (2004).Google Scholar
8 Wei, M., Kang, B., Sung, C. and Mead, J., Macromolecular Materials and Engineering 291 (11), 1307 (2006).Google Scholar
9 Zhang, Y., Huang, Z. M., Xu, X., Lim, C. T. and Ramakrishna, S., Chemistry of Materials 16 (18), 3406 (2004).Google Scholar
10 Powell, H. M. and Boyce, S. T., Journal of Biomedical Materials Research Part A 84A (4), 1078 (2007).Google Scholar
11 Chong, E. J., Phan, T. T., Lim, I. J., Zhang, Y. Z., Bay, B. H., Ramakrishna, S. and Lim, C. T., Acta Biomaterialia 3 (3), 321 (2007).Google Scholar