Article contents
Vapor Grown Carbon Fiber Reinforced Aluminum Matrix Composites for Enhanced Thermal Conductivity
Published online by Cambridge University Press: 10 February 2011
Abstract
Aluminum matrix composites reinforced with high thermal conductivity vapor grown carbon fiber (VGCF) were developed for improved thermal efficiencies in electronic devices. The carbon fiber was heat treated to increase its thermal conductivity. Various aluminum matrix composites were fabricated by the densification of fiber preforms using a pressure casting technique. Uniformity of the density was examined using optical microscopy. A scanning electron microscope equipped with a microprobe was utilized to examine the mechanical integrity of the composite. Mechanical properties, including tension, compression and flexural properties, were measured. While the results of the mechanical property measurements indicate moderate values, the composite exhibited remarkable thermal conductivity that reached 642 W/m.K, three times that of aluminum, at a fiber volume fraction of 36.5%, following closely the rule of mixture.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1999
References
- 4
- Cited by