Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T07:41:48.215Z Has data issue: false hasContentIssue false

Vanadium Dioxide Thin Films for Thermo-Optical Switching Applications

Published online by Cambridge University Press:  01 February 2011

Lijun Jiang
Affiliation:
New Jersey Institute of Technology Newark, NJ 07102, USA
William N. Carr
Affiliation:
New Jersey Institute of Technology Newark, NJ 07102, USA
Get access

Abstract

Vanadium dioxide (VO2) thin films were fabricated by e-beam evaporation of vanadium thin films followed by thermal oxidation in oxygen ambient. The properties of the VO2 films were investigated for thermo-optical switching applications. Synthesized VO2 film displays a phase transition at 65 – 68 °C. It exhibits an abrupt change in optical reflectivity over the phase transition temperature range. Results for VO2 on a highly reflective metal layer are strongly dependent on the VO2 thickness. The optical switching has a major hysteresis of about 15 °C between the heating and cooling branches. The evolution of the surface morphology with the oxidation time was studied with a SEM. The VO2 film was patterned on microplatforms by metal lift-off technique. We conclude that the evaporation followed by oxidation is an effective method to produce active VO2 film for thermo-optical switching devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Morin, F. J., Phys. Rev. Lett. 3 (34), 34 (1959)10.1103/PhysRevLett.3.34Google Scholar
2. De Natale, J. F., Hood, P. J., and Harker, A. B., J. Appl. Phys. 66 (12), 5844 (1989)10.1063/1.343605Google Scholar
3. Burkhardt, W., Christmann, T., Franke, S., Kriegseis, W., Meister, D., Meyer, B. K., Niessner, W., Schalch, D., and Scharmann, A., Thin Solid Films 402, 226 (2002)10.1016/S0040-6090(01)01603-0Google Scholar
4. Jerominek, H., Picard, F., and Vincent, D., Optical Engineering 32 (9), 2092 (1993)10.1117/12.143951Google Scholar
5. Chain, E. E., J. Vac. Sci. Technol. A, 5 (4), 1836 (1987)10.1116/1.574510Google Scholar
6. Nyberg, G. A., and Buhrman, R. A., Thin Solid Films 147, 111 (1987)10.1016/0040-6090(87)90277-XGoogle Scholar
7. Maruyama, T., and Ikuta, Y., J. Mat. Sci. 28, 5073 (1993)10.1007/BF00361182Google Scholar
8. Kim, D. H., and Kwok, H. S., Appl. Phys. Lett. 65 (25), 3188 (1994)10.1063/1.112476Google Scholar
9. Yin, D., Xu, N., Zhang, J., and Zheng, X., J. Phys. D: Appl. Phys. 29, 1051 (1996)10.1088/0022-3727/29/5/002Google Scholar
10. Verleur, H. W., Barker, A. S. Jr, and Berglund, C. N., Phys. Rev. 172 (3), 788 (1968)10.1103/PhysRev.172.788Google Scholar
11. Balberg, I., and Trokman, S., J. Appl. Phys. 46 (5), 2111 (1975)10.1063/1.321849Google Scholar
12. Haidinger, W., and Gross, D., Thin Solid Films 12, 433 (1972)10.1016/0040-6090(72)90108-3Google Scholar
13. Chain, E. E., J. Vac. Sci. Tech. A 4, 432 (1986)10.1116/1.573897Google Scholar
14. Thin Film Center Inc, 2745 E Via Rotonda, Tucson, AZ 85716, USAGoogle Scholar
15. Jiang, L., Ph.D. Dissertation, New Jersey Institute of Technology, 2003.Google Scholar