Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T05:12:54.910Z Has data issue: false hasContentIssue false

Valence and Local Environment of Molybdenum in Aluminophosphate Glasses for Immobilization of High Level Waste from Uranium-Graphite Reactor Spent Nuclear Fuel Reprocessing

Published online by Cambridge University Press:  19 March 2015

Sergey V. Stefanovsky
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Bld. 4, Moscow, 119071 Russia.
Andrey A Shiryaev
Affiliation:
Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Leninskii av. 31, Bld. 4, Moscow, 119071 Russia.
Michael B. Remizov
Affiliation:
FSUE Production Association “Mayak”, Lenin st. 13, Ozersk Chelyabinsk reg. 456780 Russia
Elena A. Belanova
Affiliation:
FSUE Production Association “Mayak”, Lenin st. 13, Ozersk Chelyabinsk reg. 456780 Russia
Pavel A. Kozlov
Affiliation:
FSUE Production Association “Mayak”, Lenin st. 13, Ozersk Chelyabinsk reg. 456780 Russia
Boris F. Myasoedov
Affiliation:
Vernadsky Institute of Geochemistry and Analytical Chemistry RAS, Kosygin st. 19, Moscow 119071 Russia
Get access

Abstract

Two Mo-bearing glasses considered as candidate forms for high level waste (HLW) a uranium-graphite reactor spent nuclear fuel (SNF) reprocessing were characterized. Incorporation of Mo in sodium aluminophosphate (SAP) glass increases its tendency to devitrification with segregation of orthophosphate phases. Valence state and local environment of Mo in the materials containing ∼2 wt.% MoO3 were determined by X-ray absorption fine structure (XAFS) spectroscopy. In the quenched samples composed of major vitreous and minor AlPO4 nearly all Mo is located in the vitreous phase as [Mo6+О6] units whereas in the annealed samples Mo is partitioned among vitreous and one or two orthophosphate crystalline phases in favor of the vitreous phase. Mo predominantly exists in a hexavalent state in distorted octahedral environment. Four oxygen ions are positioned at a distance of ∼1.71-1.73 Å and two - at a distance of 2.02-2.04 Å. Minor Mo(V) is also present as indicated by a response in EPR spectra with g ≈ 1.911-1.915.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Belanova, E.A., Remizov, M.B., Aloy, A.S., and Koltsova, T.I., Problems Radiat. Safety (Russ.) [2], 3 (2014).Google Scholar
Belanova, E.A., Remizov, M.B., Aloy, A.S., and Koltsova, T.I., Problems Radiat. Safety (Russ.) [4], 27 (2012).Google Scholar
Pinet, O., Dussossoy, J.L., David, C., and Fillet, C., J. Nucl. Mater. 377, 307 (2008).CrossRefGoogle Scholar
Dunnett, B.F., Gribble, N.R., Short, R., Turner, E., Steele, C.J., and Riley, A.D., Glass. Technol.: Eur. J. Glass Sci. Technol. A, 53, 166 (2012).Google Scholar
Do Quang, R., Petitjean, V., Hollebecque, F., Pinet, O., Flament, T., and Prod’homme, A., in Waste Management 2003 Conf. February 23-27, 2003, Tucson, AZ (2003).Google Scholar
Morris, J.B., Chidley, B.E., in: Management of Radioactive Wastes from the Nuclear Fuel Cycle. Vienna, IAEA (1976).Google Scholar
Grunewald, W., Koschorke, H., Weisenburger, S, Zeh, H., in: Radioactive Waste Management. Proc. Int. Conf. Seattle, 1620 May 1984. Vienna, IAEA, 2 (1984).Google Scholar
Gaudin, C., Schuller, S., Cormier, L., Calas, G., and Kroeker, S., in: ATALANTE 2012. Abstracts (2012), p. 301.Google Scholar
Stefanovsky, S.V., Phys. Chem. Mater. Treat. [2], 63 (1993).Google Scholar
Poirier, G., Ottoboni, F.S., Kassanjes, F.C., Remonte, A., Messaddeq, Y., and Ribeiro, S.J.L., J. Phys. Chem. 112, 4481 (2008).CrossRefGoogle Scholar
Koudelka, L., Rösslerová, I., Holubová, J., Mošner, P., Montagne, L., and Revel, B., J. Non-Cryst. Solids, 357, 2816 (2011).CrossRefGoogle Scholar
Marzouk, S., Abo-Naf, S.M., Hammam, M., El-Gendy, Y.A., and Hassan, N.S., J. Appl. Sci. Res. 7, 935 (2011).Google Scholar
Da, N., Grassmé, O., Nielsen, K.H., Peters, G., Wondraczek, L., J. Non-Cryst. Solids. 357, 2202 (2011).CrossRefGoogle Scholar
Camara, B., Lutze, W., and Lux, J., “An Investigation on the Valency State of Molybdenum in Glasses with and without Fission Products,” Scientific Basis for Nuclear Waste Management, ed. Northrup, C.J.M. Jr. (Plenum Press, 1980) 2, pp. 93102.CrossRefGoogle Scholar
Kawamoto, Y., Clemens, K., and. Tomozawa, M., J. Amer. Ceram. Soc. 64, 292 (1981).CrossRefGoogle Scholar
Kawamoto, Y., Clemens, K., and. Tomozawa, M., and Warden, J.T., Phys. Chem. Glasses 22, 110 (1981).Google Scholar
Horneber, A., Camara, B., and Lutze, W., Mater. Res. Soc. Symp. Proc. 11, 279 (1982).CrossRefGoogle Scholar
Schreiber, H.D., J. Geophys. Res. 92, 9225 (1993).CrossRefGoogle Scholar
Short, R.J., Hand, R.J., and Hyatt, N.C., Mater. Res. Soc. Symp. Proc. 757, 141 (2002).CrossRefGoogle Scholar
Calas, G., Le Grand, M., Galoisy, L., and Ghaleb, D., J. Nucl. Mater. 322, 15 (2003).CrossRefGoogle Scholar
Short, R.J., Hand, R.J., Hyatt, N.C., and Möbus, G., J. Nucl. Mater. 340, 179 (2005).CrossRefGoogle Scholar
Farges, F., Siewert, R., Brown, G.E. Jr., Guesdon, A., and Morin, G., Canad. Miner. 44, 731 (2006).CrossRefGoogle Scholar
Farges, F., Siewert, R., Ponader, C.W., Brown, G.E. Jr., Pichavant, M., and Behrens, H., Canad. Miner. 44, 755 (2006).CrossRefGoogle Scholar
Schuller, S., Pinet, O., Granjiean, A., and Blisson, T., J. Non-Cryst. Solids 354, 296 (2008).CrossRefGoogle Scholar
Caurant, D., Majérus, O., Fadel, E., Quintas, A., Gervais, C., Charpentier, T., and Neuville, D., J. Nucl. Mater. 396, 94 (2010).CrossRefGoogle Scholar
Landry, R.J., J. Chem. Phys. 48, 1422 (1968).CrossRefGoogle Scholar
Parke, S. and Watson, A.C., Phys. Chem. Glasses 10, 37 (1969).Google Scholar
Baucher, J. and Parke, S., “ESR and Optical Studies of Mo(V) in Phosphate Glasses,” Amorphous Materials, ed. Douglas, R.W. and Ellis, B. (Wiley, 1971) pp. 399404.Google Scholar
Kuzmin, A. and Purans, J., J. Phys. IV France 7, C2–971 (1997).Google Scholar
Khattak, G.D., Salim, M.A., Al-Harthi, A.S., Thompson, D.L., and Wenger, L.E., J. Non-Cryst. Solids 212, 180 (1997).CrossRefGoogle Scholar
Cozar, O., Magdas, D.A., and Ardelean, I., J. Non-Cryst. Solids 354, 1032 (2008).CrossRefGoogle Scholar
Saddeek, Y.B. and Abo-Naf, S.M., Archives of Acoustics, 37, 341 (2012).CrossRefGoogle Scholar
Ravel, B. and Newville, M., J. Synchrotron Radiat. 12 537541 (2005).CrossRefGoogle Scholar
Ankudinov, A.L. and Rehr, J.J., Phys. Rev. B 56 17121716 (1997).CrossRefGoogle Scholar
Garif’yanov, N.S. and Yafaev, N.R., Sov. Phys. – JETF 16, 1392 (1963).Google Scholar