Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T09:21:25.758Z Has data issue: false hasContentIssue false

UV and Blue Photoluminescence from Silicon Nanocolloids

Published online by Cambridge University Press:  15 February 2011

Shingo Iwasaki
Affiliation:
Department of Material Science, Faculty of Science, Himeji Institute of Technology, 1479–1, Kamigori, Hyogo, 678–12, Japan
Keisaku Kimura
Affiliation:
Department of Material Science, Faculty of Science, Himeji Institute of Technology, 1479–1, Kamigori, Hyogo, 678–12, Japan
Get access

Abstract

We have prepared silicon nanocolloids by trapping silicon nanocrystallites produced by a gas evaporation method into an organic liquid. Blue photoluminescence (PL) at a peak maximum around 480 nm from silicon nanocolloids has been observed at room temperature. The external quantum efficiency of blue PL is 0.16 %. A room temperature UV PL has been observed by dropping alkaline solids such as sodium hydroxide (NaOH), potassium hydroxide (KOH) and calcium hydroxide (Ca(OH)2) into silicon nanocolloids. The mechanism of blue and UV PL from silicon nanocolloids is discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Takagi, H., Ogawa, H., Yamazaki, Y., Ishizaki, A. and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990)Google Scholar
2.Osaka, Y., Tsunetomo, K., Toyomura, F., Myoren, H. and Kohno, K., Jpn. J. Appl. Phys. 31, L365 (1992)Google Scholar
3.Morisaki, H., Hashimoto, H., Ping, F.W., Nozawa, H. and Ono, H., J. Appl. Phys. 74, 297 (1993)Google Scholar
4.Ruckschloss, M., Landkammer, B. and Veprek, S., Appl. Phys. Lett. 63, 1474 (1993)Google Scholar
5.Kanemitsu, Y., Futagi, T., Matsumoto, T. and Mimura, H., Phys. Rev. B49, 14732 (1994)Google Scholar
6.Ruckschloss, M., Ambacher, O. and Veprek, S., J. Lumin. 57, 1 (1993)Google Scholar
7.Tamura, H., Ruckschloss, M., Wirschem, T. and Veprek, S., Appl. Phys. Lett. 65, 1537 (1994)Google Scholar
8.Kovalev, D.I., Yaroshetzkii, I.D., Muschik, T., PetrovaKoch, V. and Koch, F., Appl. Phys. Lett. 64, 214 (1994)Google Scholar
9.Ito, T., Ohta, T. and Hiraki, A., Jpn. J. Appl. Phys. 31, L1 (1992)Google Scholar
10.Tamura, H., Ruckschloss, M., Wirschem, T. and Veprek, S., Appl. Phys. Lett. 65, 1537 (1994)Google Scholar
11.Kohno, K., Osaka, Y., Toyomura, F. and Katayama, H., Jpn. J. Appl. Phys. 33, 6616 (1994)Google Scholar
12.Yamaguchi, T., Yoshida, S. and Kinbara, A., Thin Solid Films 21, 173 (1974)Google Scholar
13.Ishikawa, H., Ida, T. and Kimura, K., Surf. Rev. and Lett. 3, 1153 (1996)Google Scholar
14.Littau, K.A., Szajowski, P.J., Muller, A.J. and Brus, L.E., J. Phys. Chem. 97, 1224 (1993)Google Scholar
15.Iwasaki, S., Ida, T. and Kimura, K., Jpn. J. Appl. Phys. 35, L551 (1996)Google Scholar
16.Wada, N. and Ichikawa, M., J. Appl. Phys. 15, 755 (1976)Google Scholar
17.Kimura, K. and Bandow, S., Bull. Chem. Soc. Jpn. 56, 3578 (1983)Google Scholar
18.Hayashi, S., Kawata, S., Kim, H.M. and Yamamoto, K., Jpn. J. Appl. Phys. 32, 4870 (1993)Google Scholar
19.Kanemitsu, Y., Ogawa, T., Shiraishi, K. and Takeda, K., Phys. Rev. B48, 4883 (1993)Google Scholar