No CrossRef data available.
Article contents
Using Mass Spectrometry to Investigate the Structural Features of Photocrosslinked Co-Networks based on Gelatin and Poly(ethylene glycol) Methacrylates
Published online by Cambridge University Press: 08 February 2012
Abstract
Gelatin was functionalized with glycidyl methacrylate and photocrosslinked in the presence of poly(ethylene glycol) dimethacrylate (PEGDMA) or poly(ethylene glycol) monomethacrylate (PEGMA) to create a biopolymer-based system with tailorable properties. These co-networks were hydrolyzed using 6 M HCl and the degradation products were analyzed and identified using matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry. This technique successfully identified gelatin-derived peptides such as FLPEPPE, SFLPEPPE, and SFLPEPPEE as well as an accompanying PEG-g-poly(methacrylic acid) component. No oligo- or polymethacrylates were monitored at any molecular weight range above m/z = 500, which indicated that they possessed lower molecular weights. An in vitro hydrolytic degradation experiment performed in pH 7.4 PBS buffer solution at 37 °C showed that these networks, which were prepared without the addition of a potentially toxic photoinitiator, exhibited mass loss of up to 50 wt% at 6 weeks of incubation time. These results provide valuable insight into how these functional gelatin-based co-network biomaterials will perform in a biological setting.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1403: Symposium V – Multifunctional Polymer-Based Materials , 2012 , mrsf11-1403-v03-07-kk02-07
- Copyright
- Copyright © Materials Research Society 2012
References
REFERENCES
A correction has been issued for this article:
Linked content
Please note a has been issued for this article.