Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T18:03:02.488Z Has data issue: false hasContentIssue false

Using Correlations to Understand Changes in Actinide Bonding

Published online by Cambridge University Press:  26 February 2011

Richard G. Haire
Affiliation:
[email protected], ., ., ., ., PA, ., United States
Stephen Heathman
Affiliation:
[email protected], Joint Research Center, ITU, EC, Karlsruhe, D76125, Germany
Get access

Abstract

An important issue in actinide science is the changing role of the 5f electrons, both when progressing across the series, as well as how experimental variables affect these roles in a particular element's chemistries and physics. The function of these 5f electrons can be changed by experimental conditions: temperature and pressure being two of many such variables. The 5f electrons of several actinide metals, their alloys and compounds are affected greatly by pressure, due to the very large decreases in interatomic distances encountered under pressure. The latter bring about significant changes in the total energy of the system and in the electronic energy levels, which in turn affect the potential for overlap/hybridization) of their orbitals, promotion of electrons to other orbitals, etc. The physical state, temperature, pressure, specific structures, magnetic interactions and spin polarization effects are all critical parameters for bonding. Often correlations of behavior with these parameters can provide unique insights and understanding into the bonding and the changes that occur in it. With the advancement of modern computation approaches using FPMTO, or other approaches, theory has enlightened greatly the understanding of not only the bonding behavior of these elements but also the understanding of changes observed experimentally. But these computational efforts have some complications and limitations, and at times experimental findings and theory are not always in full agreement. In contrast to the behaviors of the elements, changes observed with compounds often are not be linked directly to the involvement of 5f electrons, due in part to the presence and bonding role of non-actinide atoms. The latter affect both the actinide interatomic distances and the type of electronic orbtals that interact. Presented here is an overview of the pressure behavior several actinide elements, some insights into the bonding behavior of compounds under pressure and selected correlations that help explain changes occurring in electronic configurations and bonding.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Worden, E. F., Blaise, J., Fred, M., Trautmann, N. and Wyart, J-F., in The Chemistry of the Actinide and Transactinide Elements, 3rd edition, Morss, L. R., Edelstein, N. M. and Fuger, J., eds. (Springer, Netherlands, 2006) Vol.4, pp. 17531835.Google Scholar
2. Brooks, M. S. S., Johansson, B. and Skriver, S. K., in Electronic Structure and Bulk Ground State properties of the Actinides, Freeman, A. J. and Lander, G. H., eds. (North-Holland, Amsterdam, 1986) Vol.1, pp. 163269.Google Scholar
3. Heathman, S., Haire, R. G., Bihan, T. Le, Lindbaun, A., Litfin, K., Méresse, Y. and Libotte, H., Phys. Rev. Lett., 85, 2961 (2000).Google Scholar
4. Lindbaum, A., Heathman, S., Litfin, K. and Méresse, Y. and Haire, R. G., Phys. Rev. B., 63,214101 (2001).Google Scholar
5. Bihan, T. Le, Haire, R. G., Heathman, S., Idiri, M. and Lindbaum, A., J. Nuc. Sci. and Tech., Suppl. 3, 45 (2002).Google Scholar
6. Lindbaum, A., Heathman, S., Bihan, T. Le, Haire, R. G., Idiri, M. and Lander, G. H., J. Phys.:Condens. Matter, 15, S2297 (2003).Google Scholar
7. Haire, R. G., Heathman, S., Idiri, M., Bihan, T. Le, Lindbaum, A. and Rebizant, J., Phys. Rev. B, 67, 134101 (2003).Google Scholar
8. Heathman, S., Haire, R. G., Bihan, T. Le, Lindbaum, A., Idiri, M., Normile, P., Li, S., , Ahuja, Johansson, B. and Lander, G. H., Science, 309,110 (2005).Google Scholar
9. Haire, R. G., Heathman, S., Bihan, T. Le, Lindbaum, A. and Iridi, M., Mat. Res. Soc. Symp. Proc., 802, 15 (2004) 15.Google Scholar
10. Söderlind, P., Mat. Res. Soc. Symp. Proc., 893, 15 (2006).Google Scholar
11. Söderlind, P. and Landa, A., Phys. Rev. B, 72, 024109 (2005).Google Scholar
12. Söderlind, P. and Landa, A., in Recent Advances in Actinide Science, Alvarez, R., Bryan, N. D. and May, I., eds., (RSC, Publishing, Cambridge, 2006) pp.358.Google Scholar
13. Pénicaud, M., J. Phys.: Condens. Matter 17, (2205)6257.Google Scholar
14. Pénicaud, M., Mat. Res. Soc. Symp. Proc., 893, 27 (2006).Google Scholar
15. Pénicaud, M., in Recent Advances in Actinide Science, Alvarez, R., Bryan, N. D. and May, I., eds., (RSC, Publishing, Cambridge, 2006) pp.725.Google Scholar
16. Savrasov, S. Y., Haule, K. and Kotliar, G., Phys. Rev. Lett., 96, 036404 (2006).Google Scholar
17. Kotliar, G., Savrasov, S. Y., Haule, K., Oudovenko, V. S., Parcollet, O. and Marianetti, C. A., Rev. Mod. Physics, 78, 865. (2006)Google Scholar
18. Haire, R. G., Benedict, U., Peterson, J. R. DuFour, C. and Dabos, S., Physica B+C, 144 (1986)19.Google Scholar
19. Haire, R. G., Alloys and Comp., in press (2007).Google Scholar
20. Huray, P. G. and Nave, S. E., in Handbook on the Chemistry and Physics of the Actinides, Freeman, A. J. and Lander, G. H., eds., (North Holland, Amsterdam, 1986).Google Scholar
21. Haire, R. G., Peterson, J. R., Benedict, U. and Dufour, C., Less-Common Metals, 102,119 (1984).Google Scholar
22. Heathman, S., Haire, R. G., LeBihan, T., Ahuja, R., Li, S., Luo, W. and Alloys, B. Johansson and Comp., (in press, 2007).Google Scholar
23. Söderlind, P., Europhys. Lett., 55, 525 (2001).Google Scholar
24. Söderlind, P., Landa, A and Sidigh, B., Phys. Rev. B, 66, 205109 (2002).Google Scholar
25. Sidigh, B., Söderlind, P. and Wolfer, W. G., Phys. Rev. 68, 241101R (2003).Google Scholar
26. Kutepov, A. L. and Kutepova, S. G., J. Phys.: Condens. Matter, 15, 260 (2003).Google Scholar
27. Landa, A. and Söderlind, P., J. Alloys Compd., 354 99 (2003).Google Scholar
28. Niklasson, A. M., Wills, J. M., Katsnelson, M. I., Abrikosov, I. A., Eriksson, O. and Johansson, B., Phys. Rev. B, 67, 235105(2003).Google Scholar
29. Söderlind, P. and Sadigh, B., Phys. Rev. Lett., 92, 185702 (2004).Google Scholar
30. Lashley, J. C., Lawson, A., McQueen, R. J. and Lander, G. H., Phys. Rev. B72 054416 (2005).Google Scholar