Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-25T19:35:14.257Z Has data issue: false hasContentIssue false

The Use of Symmetry in the TEM Analysts of Precipitate Morphologies

Published online by Cambridge University Press:  25 February 2011

U. Dahmen
Affiliation:
Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
K. H. Westhacott
Affiliation:
Materials and Molecular Research Division, Lawrence Berkeley Laboratory, Department of Materials Science and Mineral Engineering, University of California, Berkeley, CA 94720
Get access

Abstract

This study points out how symmetry properties inherent in precipitation reactions can be exploitet to facilitate and improve the accuracy of a morphological analysis by TEM. A method is given for the simple determination of the direction and distribution of needle precipitates and the habit plane of plate precipitates based on the use of symmetry properties of the matrix crystal. The bicrystal symmetry of different orientation relationships between cubic crystals and its connection with observed and equilibrium shapes is illustrated with examples of high resolution micrographs of Ge precipitates in an Al matrix.

Type
Articles
Copyright
Copyright © Materials Research Society 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Landau, L. D. and Lifshitz, E.M., ”Statistical Physics”, Addison Wesley.Google Scholar
2. Sanchez, J. M., Gratias, D. and DeFontaine, D., Acta Cryst. A 38, 214 (1982).CrossRefGoogle Scholar
3. VanTendeloo, G. and Amelinckx, S., Acta Cryst. A 30, 431 (1974).CrossRefGoogle Scholar
4. Gratias, D., Portier, R. and Fayard, M., Acta Cryst. A 35, 885 (1979).CrossRefGoogle Scholar
5. Boulesteix, C., Phys. stat. sol. (a) 86, 11 (1984).-CrossRefGoogle Scholar
6. Cahn, J. W., Acta Met. 25, 721 (1977).CrossRefGoogle Scholar
7. Cahn, J. W. and Kalonji, G., Proc. Int. Conf. Solid-Solid Phase Transf., Pittsburgh, (1981), p. 3.Google Scholar
8. Portier, R. and Gratias, D., J. de Phys., Coll. C4 43, 4 (1982).Google Scholar
9. Wadhawan, V. K., Mat. Sci. Forum 3, 91 (1985).CrossRefGoogle Scholar
10. Lamine, A. Ben, Portier, R., Senateur, J.P. and Reynaud, F., Scr. Met. 19, 63 (1985).CrossRefGoogle Scholar
11. Edington, J. W., Practical Electron Microscopy in Materials Science, MacMillan Philips Technical Library, Philips, Eindhoven (1975).Google Scholar
12. Weatherly, G. C., Humble, P., Borland, D., Acta Met. 27, 1815 (1979).CrossRefGoogle Scholar
13. Allen, S. M., 10th. Int. Congr. Electr. Micr. (1982)p. 353.Google Scholar
14. Lang, J. M., Dahmen, U. and Westmacott, K.H., Phys. stat. sol. (a) 75, 409 (1983).CrossRefGoogle Scholar
15. Köster, U., Mat. Sci. Eng. 5, 174 (1969).CrossRefGoogle Scholar