Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-19T23:55:34.188Z Has data issue: false hasContentIssue false

The Use of Surrogates in Waste Immobilization Studies: A Case Study of Plutonium

Published online by Cambridge University Press:  01 February 2011

Paul A. Bingham
Affiliation:
Immobilization Science Laboratory, Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
Russell J. Hand
Affiliation:
Immobilization Science Laboratory, Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
Martin C. Stennett
Affiliation:
Immobilization Science Laboratory, Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
Neil C. Hyatt
Affiliation:
Immobilization Science Laboratory, Department of Engineering Materials, University of Sheffield, Sir Robert Hadfield Building, Mappin Street, Sheffield S1 3JD, UK.
Mike T. Harrison
Affiliation:
Materials and Products, Nexia Solutions Ltd, The Technology Centre, Sellafield, Seascale CA20 1PG, UK.
Get access

Abstract

Surrogates are widely used in the research and development of nuclear wasteforms, providing detailed insight into the chemical and physical behaviour of the wasteform whilst avoiding the widespread (restricted and costly) use of radiotoxic elements in the laboratory. However, caution must be exercised when dealing with surrogates since no single element or compound perfectly mimics all aspects of the behaviour of another. In this paper we present a broad discussion of the use of surrogates in waste immobilization, drawing upon and highlighting our research into glass and ceramic wasteforms for the immobilization of bulk PuO2.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ojovan, M. I. and Lee, W. E., An Introduction to Nuclear Waste Immobilisation (Elsevier, 2005).Google Scholar
2. Donald, I. W., Metcalfe, B. L. and Taylor, R. N. J., J. Mater. Sci. 32, 5851 (1997).Google Scholar
3. Weber, W. J. and Roberts, F. P., Nucl. Technol. 60, 178 (1983).Google Scholar
4. Weber, W. J., Ewing, R. C., Angell, C. A., Arnold, G. W., Cormack, A. N., Delaye, J. M., Griscom, D. L., Hobbs, L. W., Navrotsky, A., Price, D. L., Stoneham, A. M. and Weinberg, M. C., J. Mater. Res. 12, 1946 (1997).Google Scholar
5. Ewing, R. C., Weber, W. J. and Lian, J., J. Appl. Phys. 95, 5949 (2004).Google Scholar
6. Ewing, R. C., Earth Planet. Sci. Lett. 229, 165 (2005).Google Scholar
7. Harrison, M. T., Scales, C. R., Bingham, P. A. and Hand, R. J., in Scientific Basis for Nuclear Waste Management XXX, edited by Dunn, D. S., Poinssot, C. and Begg, B., (Mater. Res. Soc. Proc. 985, Warrendale, PA, 2007) in press.Google Scholar
8. Stennett, M. C., Hyatt, N. C., Lee, W. E. and Maddrell, E. R., Ceram. Trans. 176, 81 (2006).Google Scholar
9. Muller, I., Weber, W. J., Vance, E. R., Wicks, G. and Karraker, D., “Glasses, Ceramics and Composites”, Advances in Plutonium Chemistry, 1967–2000, ed. Hoffman, D. C. (American Nuclear Society, 2002) pp. 260-307.Google Scholar
10. Kushnikov, V. V., Matyunin, Y. I. and Krylova, N. V., Soviet Atomic Energy 70, 299 (1991).Google Scholar
11. Deschanels, X., Peuget, S., Cachia, J. N. and Charpentier, T., Progress in Nuclear Energy 49, in press (2007).Google Scholar
13. Schreiber, H. D., J. Geophys. Res. 92, 9225 (1987).Google Scholar
14. Darab, J. G., Li, H., Schweiger, M. J., Vienna, J. D., Allen, P. G., Bucher, J. J., Edelstein, N. M. and Shuh, D. K., Proceedings of plutonium futures-the science. Topical conference on plutonium and the actinides, Santa Fe, USA (1997) pp. 143-145.Google Scholar
15. Lopez, C., Deschanels, X., Bart, J. M., Boubals, J. M., Den Auwer, C. and Simoni, E., J. Nucl. Mater. 312, 76 (2003).Google Scholar
16. Marra, J. C., Cozzi, A. D., Pierce, R. A., Pareizs, J. M., Jurgensen, A. R. and Missimer, D. M., Ceramic Transactions 132, 381 (2002).Google Scholar
17. Bastick, R. E., J. Soc. Glass Technol. 42, 70T (1958).Google Scholar
18. Feng, X., Li, H., Li, L. L. D. L., Darab, J. G., Schweiger, M. J., Vienna, J. D., Bunker, B. C., Allen, P. G., Bucher, J. J., Craig, I. M., Edelstein, N. M., Shuh, D. K., Ewing, R. C., Wang, L. M. and Vance, E. R., Ceram. Trans. 93, 409 (1999).Google Scholar
19. Schreiber, H. D. and Hockman, A. L., J. Amer. Ceram. Soc. 70, 591 (1987).Google Scholar
20. Meaker, T. F., U.S. DoE Report WSRC-TR-96-0321. Available electronically at http://www.osti.gov/bridge/servlets/purl/481473-rME0M6/webviewable/481473.pdf Google Scholar