Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:22:38.400Z Has data issue: false hasContentIssue false

Use of Si-YBaCuO Intermixed System for Patterning of Superconducting Thin Films

Published online by Cambridge University Press:  28 February 2011

Q. Y. Ma
Affiliation:
Microelectronics Sciences Laboratories and Center for Telecommunications Research, 1312 Mudd, Columbia University, New York, NY 10027
E. S. Yang
Affiliation:
Microelectronics Sciences Laboratories and Center for Telecommunications Research, 1312 Mudd, Columbia University, New York, NY 10027
G. V. Treyz
Affiliation:
Microelectronics Sciences Laboratories and Center for Telecommunications Research, 1312 Mudd, Columbia University, New York, NY 10027
C. Shu
Affiliation:
Microelectronics Sciences Laboratories and Center for Telecommunications Research, 1312 Mudd, Columbia University, New York, NY 10027
R. M. Osgood Jr.
Affiliation:
Microelectronics Sciences Laboratories and Center for Telecommunications Research, 1312 Mudd, Columbia University, New York, NY 10027
Chin-An Chang
Affiliation:
IBM T. J. Watson Research Center, Yorktown Heights, NY 10598
Get access

Abstract

A Si-YBaCuO intermixed system has been formed using rapid thermal annealing (RTA) of Cu/BaO/Y2O2/Si layered structures, which were deposited on MgO substrates by electron-beam evaporation. The electrical and structural properties of the Si-YBaCuO system have been analyzed by resistivity, X-ray diffraction, scanning electron microscope, X-ray photoelectron spectroscopy and Auger depth profiling measurements. It was found that Si mixed with YBaCuO during annealing, thus creating an insulating film. This effect has been used to pattern YBaCuO films. The patterning process was carried out on an underlying silicon layer, rather than the YBaCuO film itself, using conventional photolithography or laser etching. After YBaCuO film deposition and RTA, the patterned region became superconducting separated by Si-YBaCuO intermixed areas. Micron-sized line features with Tc's above 77 K have been demonstrated.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Wu, M.K., Ashburn, J.R, Torng, C.J., Hor, P.H, Meng, R.L., Gao, L., Huang, A.J., Wang, Y. Q., and Chu, C.W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
2 Mankiewich, P. M., Scofield, J. H., Skocpol, W. J., Howard, R. E., Dayem, A. H., and Good, E., Appl. Phys. Lett. 51, p1753, (1987)Google Scholar
3 Koch, R. H., Umbach, C. P., Clark, G. J., Chaudhari, P., and Laibowitz, R. B., Appl. Phys. Lett. 51, p200, (1987)Google Scholar
4 Mantese, J. V., Catalan, A. B., Hamdi, A. H., and Micheli, A. L. Appl. Phys. Lett. 52, p1741, (1988); Appl. Phys. Lett. 53, p526, (1988)Google Scholar
5 Harriott, L.R., Polakos, P.A., and Rice, C.E., Appl. Phys. Lett. 55, 495, (1989).Google Scholar
6 Inam, Arun, Wu, X. D., Venkatesan, T., Ogale, S. B., Chang, C. C., and Dijkkamp, D., Appl. Phys. Lett. 51, p1112, (1987)Google Scholar
7 Mannhart, J., Scheuermann, M., Tsuei, C. C., Oprysko, M. M., Chi, C. C., Umbach, C. P., Koch, R. H., and Miller, C., Appl. Phys. Lett, 52, p1271,(1988)Google Scholar
8 Zheng, J.P, Kim, H.S., Ying, Q.Y., Barone, R., Bush, P., Shaw, D.T., and Kwok, H.S., Appl. Phys. Lett. 55, 1044, (1989).Google Scholar
9 Chang, Chin-An, Tsuei, C.C., McGuire, T.R., Yee, D.S., Boresh, J.P., Lilienthal, H.R., and Farrell, C.E., Appl. Phys. Lett. 53, 916(1988).Google Scholar
10 Ma, Q.Y., Licata, T.J., Wu, X., Yang, E.S., and Chang, Chin-An, Appl. Phys. Lett. 53, 2229 (1988).Google Scholar
11 Ma, Q.Y., Yang, E.S., Treyz, G.V., and Chang, Chin-An, Appl. Phys. Lett. 55, 896 (1989).Google Scholar
12 Treyz, G.V., Beach, R., and Osgood, R.M. Jr., Appl.Phys. Lett. 50, 475 (1987)Google Scholar