Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T17:28:43.708Z Has data issue: false hasContentIssue false

The use of a variety of synchrotron techniques in the study of cementitious materials

Published online by Cambridge University Press:  21 March 2011

P. Barnes
Affiliation:
Industrial Materials Group, Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, U.K.
S.L. Colston
Affiliation:
Industrial Materials Group, Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, U.K.
A.C. Jupe
Affiliation:
Industrial Materials Group, Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, U.K.
S.D.M. Jacques
Affiliation:
Industrial Materials Group, Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, U.K.
M. Attfield
Affiliation:
Industrial Materials Group, Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, U.K.
S. P. Bailey
Affiliation:
Industrial Materials Group, Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, U.K.
R. Pisula
Affiliation:
Industrial Materials Group, Department of Crystallography, Birkbeck College, Malet Street, London WC1E 7HX, U.K.
C. Hall
Affiliation:
Centre for Materials Science & Engineering, The University of Edinburgh, King's Buildings, Edinburgh EH9 3JL, U.K.
P. Livesey
Affiliation:
Castle Cement Ribblesdale Ltd., Clitheroe, Lancs BB7 4QF, U.K.
Get access

Extract

The electron synchrotron ’revolution’ is barely twenty years old yet its impact on materials science is immeasurable. Fig.1 captures the essence of synchrotron radiation with the dipole magnet, which is associated with a highly collimated fan of radiation due to the centripetal acceleration of electron bunches responding to the inwardly acting Lorentz force; however dipole magnets often play a secondary role in current “third generation” synchrotrons which also utilize more advanced magnet configurations (wigglers and undulators) that are capable of producing even more brilliant sources of X-radiation. The five main attributes of synchrotron X-ray beams are:

• The X-ray beam is intense, such that up to 1012 photons per second might be incident on a sample, thus enabling measurements with excellent counting statistics and/or short collection times.

• The radiation is horizontally polarized in the plane of the electron orbit.

• The X-ray beam is highly collimated, with a typical working divergence of ∼mrads, such that there is less wastage during its passage through the optical components and a superior angular resolution in the eventual measurement.

• The radiation has a smooth continuous 'white' spectrum extending into the hard (penetrating) X-ray region, thus offering the choice of conducting experiments with white radiation or alternatively enabling a free choice of wavelength by use of a monochromator.

• Since the electrons move in bunches the synchrotron X-ray source is actually pulsed, at a frequencies in the region of 3×108 s−1.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cockcroft, J. K., Barnes, P., Attfield, M., Vickers, M. and Jacques, S. D. M., in Powder Diffraction on the WEB, Birkbeck College, (2001). URL=http://pd.cryst.bbk.ac.uk/pd/welcome.htmGoogle Scholar
2. Jacobsen, C., Williams, S., Anderson, E., Browne, M. T., Buckley, C. J., Kern, D., Kirz, J., Rivers, M. and Zhiang, X., Optical Communications 86, 351 (1991).Google Scholar
3. Kirz, J., Jacobsen, C. and Howells, M., Quarterly Review of Biophys. 28, 33 (1995).Google Scholar
4. Jupe, A. C., Cockcroft, J. K., Barnes, P., P., , Colston, S. L., Sankar, G., and Hall, C., Journal of Applied Crystallography, 34, 55 (2001).Google Scholar
5. Pisula, R., Attfield, M., Barnes, P. and Teat, S., in preparation (2001).Google Scholar
6. 10-water monosulfate structure.Google Scholar
7. Taylor, J. C., Aldridge, L. P., Matulis, C. E. and Hinczak, I., “X-ray Powder Diffraction Analysis of Cements”, in Structure and Performance of Cements, edited by Barnes, P. and Bensted, J. (Spon Press, 2001) in press.Google Scholar
8. Rietveld, H. M., Journal of Applied Crystallography, 2, 65 (1969).Google Scholar
9. Geissen, B. C., and Gordon, G. E., Science, 159, 973 (1968).Google Scholar
10. Buras, B., Chwaszczewska, J., Szarras, S. and Szmid, Z., Inst. Nucl. Res. (Warsaw) Rep. No. 894/II/PS (1968).Google Scholar
11. Bordas, J., Glazer, A. M., Howard, C. J. and Bourdillon, A. J., Philosophical Magazine, 35, 311 (1977).Google Scholar
12. Buras, B., Olsen, J. Staun and Gerward, L., Nuclear Instruments and Methods, 135, 193 (1976).Google Scholar
13. Jupe, A. C., Turrillas, X., Barnes, P., Colston, S. L., Hall, C., Häusermann, D. and Hanfland, M., Physical Review B 53, 14697 (1996).Google Scholar
14. Barnes, P., Colston, S. L., Craster, B., Hall, C., Jupe, A. C., Jacques, S. D. M., Cockcroft, J. K., Morgan, S., Johnson, M., O'Connor, D., and Bellotto, M., Journal of Synchrotron Radiation 7, 117 (2000).Google Scholar
15. Barnes, P., Journal of the Physics and Chemistry of Solids 52, 1299 (1991).Google Scholar
16. Barnes, P., Clark, S.M., Häusermann, D., Henderson, E., Fentiman, C. H., Rashid, S. and Muhamad, M. N., Phase Transitions 39, 117 (1992).Google Scholar
17. Barnes, P., Turrillas, X., Jupe, A. C., Colston, S. L., O'Connor, D., Cernik, R. J., Livesey, P., Hall, C., Bates, D., and Dennis, R., J. Chem. Soc. Faraday Trans. 92, 2187 (1996).Google Scholar
18. Colston, S. L., Jacques, S. D. M., Barnes, P., Jupe, P. A. C. and Hall, C., Journal of Synchrotron Radiation 5, 112 (1998).Google Scholar
19. Barnes, P., Colston, S. L., Jupe, A. C., Jacques, S. D. M., Attfield, M., Pisula, R., Morgan, S., Hall, C., Livesey, P. and Lunt, S., “The use of synchrotron sources in the study of cement materials”, in Structure and Performance of Cements, edited by Barnes, P. and Bensted, J. (Spon Press, 2001) in press.Google Scholar
20. Muhamad, M. N., P., , , Barnes, Fentiman, C. H., Häusermann, D., Pöllman, H. and Rashid, S., Cement & Concrete Research 23, 267 (1993).Google Scholar
21. Henderson, E., Turrillas, X., and P, , , Barnes, Journal of Materials Science 30, 3856 (1995).Google Scholar
22. Rashid, S., Barnes, P. and Turrillas, X., Advances in Cement Research 4, 61 (1992).Google Scholar
23. Rashid, S., Barnes, P., Bensted, J. and Turrillas, X., Journal of Materials Science Letters 13, 1232 (1994).Google Scholar
24. Barnes, P., Jupe, A. C., Colston, S. L., Jacques, S. D. M., Grant, A., Rathbone, T., Miller, M., Clark, S. M., Cernik, R. J., Nuclear Instruments and Methods B134, 310. (1998).Google Scholar
25. Hall, C., Barnes, P., Cockcroft, J. K., Colston, S. L., Häusermann, D., Jacques, S. D. M., Jupe, A. C. and Kunz, M., Nuclear Instruments and Methods in Physics Research B, 140, 253 (1998).Google Scholar
26. Colston, S. L., Jupe, A. C. and Barnes, P., “Synchrotron Radiation Tomographic Energy-Dispersive Diffraction Imaging”, Radiation in Art and Archeometry, eds: Creach, D. C. and Bradley, D. A. (Elsevier, Oxford, 2000) pp.129150.Google Scholar
27. Hall, C., Colston, S. L., Jupe, A. C., Jacques, S. D. M., Livingston, R., Ramadan, E-S., Barnes, P., Cement & Concrete Research 30, 491 (2000).Google Scholar
28. Barnes, P., Jupe, A. C., Jacques, S. D. M., Colston, S. L., Cockcroft, J. K., Hooper, D., Betson, M., Hall, C., Barè, S., Rennie, A. R., Shannahan, J., Carter, M. A., Hoff, W. D., Wilson, M. A., and Phillipson, M. C., Nondestructive Testing and Evaluation, in press (2001).Google Scholar
29. Ehrfeld, W. and Lehr, H., Radiation Physics & Chemistry 45, 349 (1995).Google Scholar
30. Stadel, M., Freimuth, H., Hessel, V. and Lacher, M., Keram. Z. 48, 1112 (1996).Google Scholar
31. Wang, S., Li, J., Watabe, R. and Esahi, M., Journal of the American Ceramic Society 82, 213 (1999).Google Scholar
32. Colston, S. L., Barnes, P., Freimuth, H., Lacher, M. and Ehrfeld, W., Journal of Materials Science Letters 15, 1660 (1996).Google Scholar
33. Colston, S. L., O'Connor, D., Barnes, P., Mayes, D. L., Mann, S., Freimuth, H. and Ehrfeld, W., Journal of Materials Science Letters 19, 1085 (2000).Google Scholar
34. Bailey, S. P., O'Connor, D., Colston, S. L., Barnes, P., Freimuth, H. and Ehrfeld, W., “Cement-based Composite Micro-structures“, in Structure and Performance of Cements, edited by Barnes, P. and Bensted, J. (Spon Press, 2001) in press.Google Scholar