No CrossRef data available.
Published online by Cambridge University Press: 01 February 2011
Correlated-electron systems are so named due to strong interactions between electrons unlike traditional metals (e.g. copper) that have “free electrons” that interact very weakly. Knowledge of the Fermi surface, density of electron states and band structure are the starting points for a first-principles understanding of the electronic and electronically related macroscopic properties, e.g. equation of state. The use of high pressure and high magnetic fields to alter the electron-electron (hybridization) and electron-lattice interactions give us powerful tools to understand complicated rare earth and actinide correlated-electron systems and allows precise testing of experiment to theory. Correlated-electron systems yield a wide variety of ground states that are a direct result of the hybridization strength including: short and long range magnetic order, spin fluctuating, enhanced Pauli paramagnetism, heavy fermion behavior and superconductivity. We will review some results on U compounds in high magnetic fields and high pressures. By comparing the results to Ce compounds that have significantly more localized f electrons, the effect of direct 5f electron wavefunction overlap in U compounds can be discerned. Consequences on the search for U based heavy fermion superconductors will be discussed.