Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T08:54:56.433Z Has data issue: false hasContentIssue false

Unusual Fast Cation Conduction in the High-Temperature Phase of Lithium Sodium Sulfate

Published online by Cambridge University Press:  11 February 2011

H. Feldmann
Affiliation:
Münster University, Institute of Physical Chemistry and Sonderforschungsbereich 458, Schlossplatz 4/7, 48149 Münster, Germany
R. E. Lechner
Affiliation:
Hahn-Meitner-Institut, Glienicker Str. 100, 14109 Berlin, Germany
D. Wilmer
Affiliation:
Münster University, Institute of Physical Chemistry and Sonderforschungsbereich 458, Schlossplatz 4/7, 48149 Münster, Germany
Get access

Abstract

Lithium sodium sulfate (LiNaSO4) belongs to a group of simple inorganic salts exhibiting fast-cation conducting high-temperature phases with rotationally disordered anions. The analysis of a combination of quasielastic neutron scattering and high-frequency (10 MHz to 60 GHz) conductivity measurements in the high-temperature phase of LiNaSO4 reveals an unusual cation conduction mechanism: the Haven ratio, HR = D*/Dσ, turns out to be considerably larger than one. This behavior, to our knowledge detected for the first time in a typical fast ion conductor, can be traced back to a charge correlation factor clearly smaller than unity, indicating that charge transport is less effective than tracer transport in this material.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Andersen, N.H., Bandaranayake, P.W.S.K., Careem, M.A., Dissanayake, M.A.K.L., Wi-jayasekera, C.N., Kaber, R., Lundeén, A., Mellander, B.-E., Nilsson, L., Thomas, J.O., Solid State Ionics 57, 203 (1992).Google Scholar
2. Secco, E.A., Solid State Ionics 60, 233 (1993).Google Scholar
3. Lechner, R. E., Melzer, R., Fitter, J., Physica B 226, 86 (1996).Google Scholar
4. Funke, K., Wilmer, D., Radiation Effects and Defects in Solids 155, 387 (2001).Google Scholar
5. Chudley, C. T., Elliott, R. J., Proc. Phys. Soc. 77, 353 (1961).Google Scholar
6. Ferrario, M., Klein, M.L., McDonald, I.R., Mol. Phys. 86, 923 (1995).Google Scholar
7. Tärneberg, R., Lundén, A., Solid State Ionics 90, 209 (1996).Google Scholar
8. Wilmer, D., Funke, K., Witschas, M., Banhatti, R. D., Jansen, M., Korus, G., Fitter, J., Lechner, R. E., Physica B 266, 60 (1999).Google Scholar
9. Wilmer, D., Feldmann, H., Lechner, R.E., Phys. Chem. Chem. Phys. 4, 3260 (2002).Google Scholar
10. Murch, G. E., Solid State Ionics 7, 177 (1982).Google Scholar
11. Isard, J.O., J. Non-Cryst. Solids 246, 19 (1999).Google Scholar