Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-04T17:29:03.818Z Has data issue: false hasContentIssue false

Universal Correlation and Mechanism for the Antibacterial Activity of Silver Nanoparticles

Published online by Cambridge University Press:  31 January 2011

Georgios A. Sotiriou
Affiliation:
[email protected], Particle Technology Laboratory, Department of Mechanical and Process Engineering, Zurich, Switzerland
Adrian Camenzind
Affiliation:
[email protected], Particle Technology Laboratory, Department of Mechanical and Process Engineering, Zurich, Switzerland
Frank Krumeich
Affiliation:
[email protected], Particle Technology Laboratory, Department of Chemistry and Applied Biosciences, Zurich, Switzerland
Andreas Meyer
Affiliation:
[email protected], Bioprocess Laboratory, Department of Biosystems Science and Engineering, Basel, Switzerland
Sven Panke
Affiliation:
[email protected], Bioprocess Laboratory, Department of Biosystems Science and Engineering, Basel, Switzerland
Sotiris E. Pratsinis
Affiliation:
[email protected], Particle Technology Laboratory, Department of Mechanical and Process Engineering, Zurich, Switzerland
Get access

Abstract

Silver clusters (4-150 nm) anchored on nanostructured silica particles (300-400 m2/g) with closely controlled Ag content and size were made in one-step by scalable flame spray pyrolysis of Ag-nitrate and hexamethyldisiloxane containing solutions. Composite Ag/SiO2 nanoparticles were characterized by S/TEM, EDX spectroscopy, X-ray diffraction, N2 adsorption. The activity of such nanoparticles against the Gram negative bacterium Escherichia coli was investigated by monitoring the recombinantly synthesized green fluorescent protein. It is shown that higher Ag content particles exhibit a stronger antibacterial effect.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Referencesa

1 Lide, D. R., CRC Handbook of Chemistry and Physics. 89 (Internet version) ed.; Press/Taylor, CRC and Francis, : Boca Raton, FL, 2009.Google Scholar
2 Chen, X.; Schluesener, H. J., Toxicol. Lett. 176 112 (2008).Google Scholar
3 Lewis, L. N., Chem. Rev. 93 26932730 (1993).Google Scholar
4 Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P., Nature Mater. 7 442453 (2008).Google Scholar
5 Lee, P. C.; Meisel, D., J. Phys. Chem. 86 33913395 (1982).Google Scholar
6 Wahlberg, J. E., Arch. Environ. Health 11 201204 (1965).Google Scholar
7 Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramirez, J. T.; Yacaman, M. J., Nanotechnology 16 23462353 (2005).Google Scholar
8 Pal, S.; Tak, Y. K.; Song, J. M., Appl. Environ. Microbiol. 73 17121720 (2007).Google Scholar
9 Hwang, E. T.; Lee, J. H.; Chae, Y. J.; Kim, Y. S.; Kim, B. C.; Sang, B. I.; Gu, M. B., Small 4 746750 (2008).Google Scholar
10 Feng, Q. L.; Wu, J.; Chen, G. Q.; Cui, F. Z.; Kim, T. N.; Kim, J. O., J. Biomed. Mater. Res. 52 662668 (2000).Google Scholar
11 Gunawan, C.; Teoh, W. Y.; Marquis, C. P.; Lifia, J.; Amal, R., Small 5 341344 (2009).Google Scholar
12 Lok, C. N.; Ho, C. M.; Chen, R.; He, Q. Y.; Yu, W. Y.; Sun, H.; Tam, P. K. H.; Chiu, J. F.; Che, C. M., J. Biol. Inorg. Chem. 12 527534 (2007).Google Scholar
13 Ofek, B.-I.; Albrecht, R. M.; Fako, V. E.; Furgeson, D. Y., Small in press (2009).Google Scholar
14 Height, M. J.; Pratsinis, S. E. Antimicrobial and antifungal powders made by flame spray pyrolysis. EP1846327 (A1), 2007.Google Scholar
15 Loher, S.; Schneider, O. D.; Maienfisch, T.; Bokorny, S.; Stark, W. J., Small 4 824832 (2008).Google Scholar
16 Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M., Nature Mater. 8 543557 (2009).Google Scholar
17 Panacek, A.; Kvitek, L.; Prucek, R.; Kolar, M.; Vecerova, R.; Pizurova, N.; Sharma, V. K.; Nevecna, T.; Zboril, R., J. Phys. Chem. B 110 1624816253 (2006).Google Scholar
18 Kumar, A.; Vemula, P. K.; Ajayan, P. M.; John, G., Nature Mater. 7 236241 (2008).Google Scholar
19 Jeon, H. J.; Yi, S. C.; Oh, S. G., Biomater. 24 49214928 (2003).Google Scholar
20 Zaporojtchenko, V.; Podschun, R.; Schurmann, U.; Kulkarni, A.; Faupel, F., Nanotechnology 17 49044908 (2006).Google Scholar
21 Han, Y.; Jiang, J.; Lee, S. S.; Ying, J. Y., Langmuir 24 58425848 (2008).Google Scholar
22 Strobel, R.; Pratsinis, S. E., J. Mater. Chem. 17 47434756 (2007).Google Scholar
23 Hannemann, S.; Grunwaldt, J. D.; Krumeich, F.; Kappen, P.; Baiker, A., Appl. Surf. Sci. 252 78627873 (2006).Google Scholar
24 Egger, S.; Lehmann, R. P.; Height, M. J.; Loessner, M. J.; Schuppler, M., Appl. Environ. Microbiol. 75 29732976 (2009).Google Scholar
25 Madler, L.; Stark, W. J.; Pratsinis, S. E., J. Mater. Res. 18 115120 (2003).Google Scholar
26 Sambrook, J.; Russell, D. W., Molecular Cloning: A Laboratory Manual. 3 ed.; NY Cold Spring Harbor Laboratory Press: Cold Spring Harbor, 2001.Google Scholar
27 Madler, L.; Pratsinis, S. E., J. Am. Ceram. Soc. 85 17131718 (2002).Google Scholar
28 Schulz, H.; Madler, L.; Strobel, R.; Jossen, R.; Pratsinis, S. E.; Johannessen, T., J. Mater. Res. 20 25682577 (2005).Google Scholar
29 Schulz, H.; Madler, L.; Pratsinis, S. E.; Burtscher, P.; Moszner, N., Adv. Funct. Mater. 15 830837 (2005).Google Scholar