Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-19T22:43:25.371Z Has data issue: false hasContentIssue false

Uniform Solid and Hollow Metal Spheres: Formation in a Pulsed Micro-Arc and Applications

Published online by Cambridge University Press:  15 February 2011

Edward L. Dreizin*
Affiliation:
AeroChem Research Laboratories, Inc., P.O. Box 12, Princeton, NJ 08542
Get access

Abstract

A novel process for producing monodisperse metal spheres with diameters from 50 to 1000 μm has been developed. The process involves melting a consumable wire-electrode in a pulsed micro-arc, so that a single metal droplet is formed and separated in each pulse. Subsequent droplet cooling determines the final properties of the metal spheres. Control of the droplet initial temperature from the melting to the boiling point, together with variation of the cooling medium, allows production of metal spheres with unique properties, e.g., solid, internally oxidized, or hollow granules. Uniform diameter spherical particles of Al, Cu, Mo, Ni, Ta, W, Ti, Zr, and some alloys such as stainless steel, nichrome, monel, have been produced. Applications of the process include production of uniform spherical metal particles for metal combustion studies, development of a novel droplet welding technique, and production of particles for experimental simulation of micrometeoroid-surface interactions. Other possible uses may be in energy-absorbing structures, composite materials, metal micro-dosing, and micromechanical device production.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Winterberg, F., Acta Astronautica, 32 (2), 107111 (1994).Google Scholar
2. Nachtrab, W.T., Roberts, P.R., Raferty, K.R., presented at P/M in Aerospace and Defense Technologies Symposium, Tampa, Fl, 1991.Google Scholar
3. Suslov, A.V., Dreizin, E.L., USSR Patent, SU 1629160 Al, B22F9/14 (1992).Google Scholar
4. Suslov, A.V., Dreizin, E.L., Soviet Powd. Metal. Metal Ceram. 29, 939 (1990).Google Scholar
5. Suslov, A.V., Dreizin, E.L., Trunov, A.V., Powder Techn. 74, 23 (1993).Google Scholar
6. Dreizin, E.L., Trunov, M.A., IEEE Transactions on Plasma Science, 21 (6), 619624 (1993).Google Scholar
7. Dreizin, E.L., Suslov, A.V., Trunov, M.A., in Proceedings of the InternationalConference on MHD Flows in Protection of the Environment (Kiev, Ukraine, 1992) pp. 110–115.Google Scholar
8. Dreizin, E.L., PhD thesis, Odessa University, (Ukraine) 1992.Google Scholar
9. Dreizin, E.L., Suslov, A.V., Trunov, M.A., Combust. Sci. Techn. 87, 45 (1992); 90, 79, (1993).Google Scholar
10. Law, C.K., in Seventh ONR Propulsion Meeting, Edited by G.D. Roy and P. Givi, (State University of New York at Buffalo, Buffalo, NY, 1994) pp. 110–116.Google Scholar
11. Dreizin, E.L., Semjonov, K.I., Suslov, A.V., Trunov, M.A., in Proceedings of the 8th All-Union National Seminar on Electro-Droplet-Jet Engineering, (St. Petersburg, Russia, 1992) pp. 6164 (in Russian).Google Scholar
12. Meyer, R.T., Nelson, L.S., High Temperature Science, 2, 35 (1970); H.S. Levine, ibid., 3, 237 (1971); R.T. Meyer, W.G. Breiland, ibid., 4, 255 (1972).Google Scholar
13. Suslov, A.V., Dreizin, E.L., Trunov, M.A., Combust. Explos. Shock Waves 26, 394 (1991); Fizika Gorenia i Vzryva.4, 138 (1992), (in Russian).Google Scholar
14. Dreizin, E.L., Andersen, O.P., Final Report NSF Grant 111–9361240, Aerochem TP-530 (1994); Final Report Contract No. DAAA21–94-C-0033, Department of Army AeroChem TP-532 (1994).Google Scholar