Hostname: page-component-78c5997874-xbtfd Total loading time: 0 Render date: 2024-11-19T03:58:17.916Z Has data issue: false hasContentIssue false

Uniform Quantum Dots by Self-Organizing Process in Atomic Hydrogen-Assisted MBE

Published online by Cambridge University Press:  21 February 2011

Y.-J. Chun
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba City, Ibaraki 305, Japan
S. Nakajima
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba City, Ibaraki 305, Japan
Y. Okada
Affiliation:
Solid State Electronics Laboratory, Stanford University, Stanford, CA 94305, U.S.A.
M. Kawabe
Affiliation:
Institute of Materials Science, University of Tsukuba, Tsukuba City, Ibaraki 305, Japan
Get access

Abstract

The effects of atomic hydrogen (H) on formation of In(Ga)As quantum dots (QDs) by self-organizing process have been investigated. The low size fluctuation and uniform-shaped QDs are obtained at growth temperature above 450°C. The average size of InGaAs QDs are decreased from 40 nm to 20 nm by atomic H irradiation. The InGaAs QDs are formed uniformly on growth surface in with-H condition while preferentially formed and distributed along the step edges in without-H case. The photoluminescence (PL) peak intensities and full width at half maximum (FWHM) are also improved by atomic H irradiation. The waiting time before GaAs cap layer deposition is a important factor on the optical properties of QDs.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Leonard, D., Krishnamurthy, M., Reaves, C.M.v, Denbaars, S.P. and Petroff, P.M., Appl. Phys. Lett. 63, 3203 (1993).Google Scholar
2 Notzel, R., Temmyo, J. and Tamamura, T., Nature 369, 131 (1994).Google Scholar
3 Marzin, J.Y., Gerard, J.M., Izrael, A. and Barrier, D., Phys. Rev. Lett. 73, 716 (1994).Google Scholar
4 Moison, J.M., Houzay, F., Barthe, F., Leprince, L., Andre, E. and Vatel, O., Appl. Phys. Lett. 64, 196 (1994).Google Scholar
5 Wang, G., Fafard, S., Leonard, D., Bowers, J.E., Merz, J.L. and Petroff, P.M., Appl. Phys. Lett., 64 2815 (1995).Google Scholar
6 Guha, S., Madhukar, A., and Rajkuma, K.C., Appl. Phys. Lett. 57, 2110 (1990).Google Scholar
7 Eagesham, D.J. and Cerullo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
8 Orr, B.G., Kessler, D., and Snyder, C.W., Europhys. Lett. 19, 33 (1992).Google Scholar
9 Sugaya, T., Okada, Y., and Kawabe, M., Jpn. J. Appl. Phys. 32, L287 (1993).Google Scholar
10 Gerald, J.M., Appl. Phys. Lett. 6 1, 2096 (1992).Google Scholar
11 Chun, Y.J., Okada, Y. and Kawabe, M., J. Cryst. Growth 150, 497 (1995).Google Scholar
12 Solomon, G.C., Trezza, J.A. and Harris, J.S. Jr, Appl. Phys. Lett. 66, 991 (1995).Google Scholar
13 Grunthaner, F.J., Yen, M.Y., Femandez, R., Lee, T.C., Madhukar, A. and Lewis, B.F., Appl. Phys. Lett. 46, 983 (1985).Google Scholar
14 Marzin, J.Y., Gerard, J.M., Superlattice and Microstructure 5, 51 (1989).Google Scholar
15 Wang, P.D., Ledentsov, N.N., Torres, C.M.S., Kop'ev, P.S. and Ustinov, V.M., Appl. Phys. Lett. 64, 1526 (1994).Google Scholar